Suppr超能文献

针叶树种子鳞片的演化。

Evolution of the coniferous seed scale.

机构信息

Ruhr-Universität Bochum, Fakultät für Biologie und Biotechnologie, Evolution und Biodiversität der Pflanzen, Universitätsstraße 150, 44801 Bochum, Germany.

出版信息

Ann Bot. 2022 Jul 18;129(7):753-760. doi: 10.1093/aob/mcab154.

Abstract

BACKGROUND

The Florin model is the commonly accepted theory of coniferous seed scale evolution. It describes the derivation of extant seed scale morphology from the morphology of fossil conifers via the reduction of complex to simple axillary structures. In this framework the seed scale is composed of a reduced lateral shoot with fertile and sterile appendages which are interpreted as leaf homologues.

SCOPE

The Florin model has three crucial problems that we address here: (1) the original derivation series does not take the ontogeny of extant conifers into account, (2) it cannot explain the morphology of all extant conifers and (3) Taxaceae were originally excluded. Examination of seed cones of extant conifers shows that ovules occur in three different positions in the cone: in an axillary position, replacing a leaf or terminating the cone axis. By interpreting the fertile appendage or seed-bearing structure as a leaf, not all positions are possible. The exclusion of Taxaceae from conifers is in stark contrast to recent molecular phylogenetic studies, which include Taxaceae in conifers as sister to Cupressaceae. Therefore, the Florin model does not offer an adequate explanation for taxaceous morphology.

CONCLUSION

We conclude that the seed-bearing structure of conifers cannot be interpreted as homologous to a leaf. In the interpretation we present here, the seed-bearing structure is the modified funiculus of the ovule, multiples of which laterally fuse to form the seed scale. The seed scales of all extant conifers can be derived from a Cunninghamia-like morphology via fusion and reduction of individual funiculi.

摘要

背景

弗洛林模型是被广泛接受的针叶树种子鳞片进化理论。它描述了现存种子鳞片形态是如何通过减少复杂的侧枝结构而从化石松类的形态衍生而来的。在这个框架中,种子鳞片由一个简化的侧枝组成,带有可育和不育的附属物,这些附属物被解释为叶的同源物。

范围

弗洛林模型有三个关键问题,我们在这里讨论:(1)原始的衍生系列没有考虑到现存针叶树的个体发生;(2)它不能解释所有现存针叶树的形态;(3)Taxaceae 最初被排除在外。对现存针叶树种子球果的研究表明,胚珠在球果中有三种不同的位置:在侧生位置,替代叶子或终止球果轴。通过将可育的附属物或种子结构解释为叶子,并不是所有位置都是可能的。Taxaceae 被排除在针叶树之外与最近的分子系统发育研究形成鲜明对比,后者将 Taxaceae 包括在针叶树中作为 Cupressaceae 的姐妹群。因此,弗洛林模型不能为 Taxaceae 的形态提供充分的解释。

结论

我们得出结论,针叶树的种子结构不能被解释为与叶子同源。在我们这里提出的解释中,种子结构是胚珠的修改后的珠柄,多个珠柄横向融合形成种子鳞片。所有现存针叶树的种子鳞片都可以从类似于 Cunninghamia 的形态通过融合和简化单个珠柄来衍生而来。

相似文献

1
Evolution of the coniferous seed scale.
Ann Bot. 2022 Jul 18;129(7):753-760. doi: 10.1093/aob/mcab154.
2
Understanding the cone scale in Cupressaceae: insights from seed-cone teratology in .
PeerJ. 2018 Jun 1;6:e4948. doi: 10.7717/peerj.4948. eCollection 2018.
5
AGAMOUS subfamily MADS-box genes and the evolution of seed cone morphology in Cupressaceae and Taxodiaceae.
Evol Dev. 2011 Mar-Apr;13(2):159-70. doi: 10.1111/j.1525-142X.2011.00466.x.
6
Hughmillerites vancouverensis sp. nov. and the Cretaceous diversification of Cupressaceae.
Am J Bot. 2014 Dec;101(12):2136-47. doi: 10.3732/ajb.1400369. Epub 2014 Nov 21.
8
Cone size is related to branching architecture in conifers.
New Phytol. 2014 Sep;203(4):1119-1127. doi: 10.1111/nph.12864. Epub 2014 May 29.
9
Evolutionary diversification of taiwanioid conifers: evidence from a new Upper Cretaceous seed cone from Hokkaido, Japan.
J Plant Res. 2020 Sep;133(5):681-692. doi: 10.1007/s10265-020-01214-y. Epub 2020 Jul 19.

引用本文的文献

1
The Systematics and Evolution of Gymnosperms with an Emphasis on a Few Problematic Taxa.
Plants (Basel). 2024 Aug 8;13(16):2196. doi: 10.3390/plants13162196.
3
Plant Seeds and Floristic Preservation in the Anthropocene.
Ann Bot. 2022 May 18;129(7):i-v. doi: 10.1093/aob/mcac064.

本文引用的文献

1
Reconstructing Krassilovia mongolica supports recognition of a new and unusual group of Mesozoic conifers.
PLoS One. 2020 Jan 15;15(1):e0226779. doi: 10.1371/journal.pone.0226779. eCollection 2020.
2
Reproductive Ontogeny and the Evolution of Morphological Diversity in Conifers and Other Plants.
Integr Comp Biol. 2019 Sep 1;59(3):548-558. doi: 10.1093/icb/icz062.
3
An overview of extant conifer evolution from the perspective of the fossil record.
Am J Bot. 2018 Sep;105(9):1531-1544. doi: 10.1002/ajb2.1143. Epub 2018 Aug 29.
4
Unpacking a century-old mystery: Winter buds and the latitudinal gradient in leaf form.
Am J Bot. 2016 Jun;103(6):975-8. doi: 10.3732/ajb.1600129. Epub 2016 May 24.
6
Hemisphere-scale differences in conifer evolutionary dynamics.
Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):16217-21. doi: 10.1073/pnas.1213621109. Epub 2012 Sep 17.
7
8
The filling law: a general framework for leaf folding and its consequences on leaf shape diversity.
J Theor Biol. 2011 Nov 21;289:47-64. doi: 10.1016/j.jtbi.2011.08.020. Epub 2011 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验