Suppr超能文献

十二种肿瘤突变负担panel 在黑色素瘤和非小细胞肺癌中的预测性能。

Prediction performance of twelve tumor mutation burden panels in melanoma and non-small cell lung cancer.

机构信息

School of Computer Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Nan Gang District, Harbin, Heilongjiang Province, China.

出版信息

Crit Rev Oncol Hematol. 2022 Jan;169:103573. doi: 10.1016/j.critrevonc.2021.103573. Epub 2021 Dec 18.

Abstract

As a potential biomarker to predict the response to immunotherapy, tumor mutation burden (TMB) which can be estimated by the cancer gene panel (CGP) has received considerable attention. However, it is not clear which CGP is better in predicting the efficacy of immunotherapy. To evaluate the twelve CGPs, we compared them on 13 datasets of melanoma and non-small cell lung cancer (NSCLC) from the perspective of gene composition, reliability of measuring TMB and prediction performance of patient treatment benefits. The larger CGPs generally performed better, but their proportions of driver genes and function densities were smaller. The CGPs performed differently on melanoma and NSCLC patients treated with two blockades. Moreover, their ability to classify and predict patients with or without long-term clinical benefits was similar but not good enough, so it is necessary to explore a higher-performance biomarker.

摘要

作为预测免疫治疗反应的潜在生物标志物,肿瘤突变负担(TMB)可以通过癌症基因panel(CGP)进行评估,因此受到了广泛关注。然而,目前尚不清楚哪种 CGP 更能预测免疫治疗的疗效。为了评估这 12 种 CGP,我们从基因组成、TMB 测量的可靠性以及患者治疗获益预测性能的角度,对来自黑色素瘤和非小细胞肺癌(NSCLC)的 13 个数据集进行了比较。较大的 CGP 通常表现更好,但它们的驱动基因比例和功能密度较小。在接受两种阻断剂治疗的黑色素瘤和 NSCLC 患者中,CGP 的表现也不同。此外,它们区分和预测有或无长期临床获益患者的能力相似,但还不够好,因此有必要探索性能更高的生物标志物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验