Florida Research and Innovation Center, Cleveland Clinicgrid.239578.2, Port Saint Lucie, Florida, USA.
Department of Microbiology, The University of Chicago, Chicago, Illinois, USA.
J Virol. 2022 Feb 23;96(4):e0151021. doi: 10.1128/JVI.01510-21. Epub 2021 Dec 22.
Recent studies have demonstrated that the signaling activity of the cytosolic pathogen sensor retinoic acid-inducible gene-I (RIG-I) is modulated by a variety of posttranslational modifications (PTMs) to fine-tune the antiviral type I interferon (IFN) response. Whereas K63-linked ubiquitination of the RIG-I caspase activation and recruitment domains (CARDs) catalyzed by TRIM25 or other E3 ligases activates RIG-I, phosphorylation of RIG-I at S8 and T170 represses RIG-I signal transduction by preventing the TRIM25-RIG-I interaction and subsequent RIG-I ubiquitination. While strategies to suppress RIG-I signaling by interfering with its K63-polyubiquitin-dependent activation have been identified for several viruses, evasion mechanisms that directly promote RIG-I phosphorylation to escape antiviral immunity are unknown. Here, we show that the serine/threonine (Ser/Thr) kinase US3 of herpes simplex virus 1 (HSV-1) binds to RIG-I and phosphorylates RIG-I specifically at S8. US3-mediated phosphorylation suppressed TRIM25-mediated RIG-I ubiquitination, RIG-I-MAVS binding, and type I IFN induction. We constructed a mutant HSV-1 encoding a catalytically-inactive US3 protein (K220A) and found that, in contrast to the parental virus, the US3 mutant HSV-1 was unable to phosphorylate RIG-I at S8 and elicited higher levels of type I IFNs, IFN-stimulated genes (ISGs), and proinflammatory cytokines in a RIG-I-dependent manner. Finally, we show that this RIG-I evasion mechanism is conserved among the alphaherpesvirus US3 kinase family. Collectively, our study reveals a novel immune evasion mechanism of herpesviruses in which their US3 kinases phosphorylate the sensor RIG-I to keep it in the signaling-repressed state. Herpes simplex virus 1 (HSV-1) establishes lifelong latency in the majority of the human population worldwide. HSV-1 occasionally reactivates to produce infectious virus and to facilitate dissemination. While often remaining subclinical, both primary infection and reactivation occasionally cause debilitating eye diseases, which can lead to blindness, as well as life-threatening encephalitis and newborn infections. To identify new therapeutic targets for HSV-1-induced diseases, it is important to understand the HSV-1-host interactions that may influence infection outcome and disease. Our work uncovered direct phosphorylation of the pathogen sensor RIG-I by alphaherpesvirus-encoded kinases as a novel viral immune escape strategy and also underscores the importance of RNA sensors in surveilling DNA virus infection.
最近的研究表明,细胞质病原体传感器视黄酸诱导基因-I(RIG-I)的信号活性受到多种翻译后修饰(PTMs)的调节,以微调抗病毒 I 型干扰素(IFN)反应。TRIM25 或其他 E3 连接酶催化的 RIG-I 半胱氨酸激活和募集结构域(CARDs)的 K63 连接泛素化激活 RIG-I,而 RIG-I 的 S8 和 T170 磷酸化通过阻止 TRIM25-RIG-I 相互作用和随后的 RIG-I 泛素化来抑制 RIG-I 信号转导。虽然已经确定了几种病毒通过干扰其 K63-多泛素依赖性激活来抑制 RIG-I 信号的策略,但直接促进 RIG-I 磷酸化以逃避抗病毒免疫的逃逸机制尚不清楚。在这里,我们表明单纯疱疹病毒 1(HSV-1)的丝氨酸/苏氨酸(Ser/Thr)激酶 US3 与 RIG-I 结合,并特异性地在 S8 处磷酸化 RIG-I。US3 介导的磷酸化抑制了 TRIM25 介导的 RIG-I 泛素化、RIG-I-MAVS 结合和 I 型 IFN 的诱导。我们构建了一个编码无催化活性 US3 蛋白(K220A)的突变 HSV-1,并发现与亲本病毒相比,US3 突变 HSV-1不能在 S8 处磷酸化 RIG-I,并以 RIG-I 依赖性方式引发更高水平的 I 型 IFNs、IFN 刺激基因(ISGs)和促炎细胞因子。最后,我们表明这种 RIG-I 逃逸机制在α疱疹病毒 US3 激酶家族中是保守的。总之,我们的研究揭示了疱疹病毒的一种新的免疫逃逸机制,其中它们的 US3 激酶磷酸化传感器 RIG-I 使其处于信号抑制状态。
单纯疱疹病毒 1(HSV-1)在世界上大多数人群中建立终生潜伏感染。HSV-1 偶尔会重新激活以产生感染性病毒并促进传播。虽然通常保持亚临床状态,但原发性感染和再激活偶尔会导致使人衰弱的眼部疾病,导致失明,以及危及生命的脑炎和新生儿感染。为了确定 HSV-1 诱导疾病的新治疗靶点,了解可能影响感染结果和疾病的 HSV-1-宿主相互作用非常重要。我们的工作揭示了α疱疹病毒编码的激酶对病原体传感器 RIG-I 的直接磷酸化是一种新的病毒免疫逃逸策略,并强调了 RNA 传感器在监测 DNA 病毒感染中的重要性。