Department of Pediatrics, Carver College of Medicine, University of Iowagrid.412584.egrid.214572.7, Iowa City, Iowa, USA.
Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowagrid.412584.egrid.214572.7, Iowa City, Iowa, USA.
mSphere. 2021 Dec 22;6(6):e0083021. doi: 10.1128/msphere.00830-21.
Two of the major classes of antifungal drugs in clinical use target ergosterol biosynthesis. Despite its importance, our understanding of the transcriptional regulation of ergosterol biosynthesis genes in pathogenic fungi is essentially limited to the role of hypoxia and sterol-stress-induced transcription factors such as Upc2 and Upc2A as well as homologs of sterol response element binding (SREB) factors. To identify additional regulators of ergosterol biosynthesis in Candida glabrata, an important human fungal pathogen with reduced susceptibility to ergosterol biosynthesis inhibitors relative to other spp., we used a serial passaging strategy to isolate suppressors of the fluconazole hypersusceptibility of a Δ deletion mutant. This led to the identification of loss-of-function mutations in two genes: , the homolog of a hypoxia gene transcriptional suppressor in Saccharomyces cerevisiae, and , a transcription factor that is involved in the regulation of carbon dioxide response in C. glabrata. Here, we describe a detailed analysis of the genetic interaction of and . In the presence of fluconazole, loss of Rox1 function restores expression to the Δ mutant and inhibits the expression of and , leading to increased levels of ergosterol and decreased levels of the toxic sterol 14α methyl-ergosta-8,24(28)-dien-3β, 6α-diol, relative to the Δ mutant. Our observations establish that Rox1 is a negative regulator of gene biosynthesis and indicate that a least one additional positive transcriptional regulator of gene biosynthesis must be present in C. glabrata. Candida glabrata is one of the most important human fungal pathogens and has reduced susceptibility to azole-class inhibitors of ergosterol biosynthesis. Although ergosterol is the target of two of the three classes of antifungal drugs, relatively little is known about the regulation of this critical cellular pathway. Sterols are both essential components of the eukaryotic plasma membrane and potential toxins; therefore, sterol homeostasis is critical for cell function. Here, we identified two new negative regulators in C. glabrata of ergosterol () biosynthesis gene expression. Our results also indicate that in addition to Upc2A, the only known activator of genes, additional positive regulators of this pathway must exist.
两种主要的抗真菌药物类别靶向麦角固醇生物合成。尽管其很重要,但我们对致病性真菌中麦角固醇生物合成基因的转录调控的理解基本上仅限于缺氧和固醇应激诱导的转录因子(如 Upc2 和 Upc2A 以及固醇反应元件结合(SREB)因子的同源物)的作用。为了鉴定其他调控物,我们使用连续传代策略从具有相对较低的麦角固醇生物合成抑制剂敏感性的人类真菌病原体 Candida glabrata 中分离出氟康唑超敏性的抑制子。这导致了两个基因的功能丧失突变的鉴定: ,这是酿酒酵母缺氧基因转录抑制因子的同源物,以及 ,这是一种参与 C. glabrata 中二氧化碳反应调节的转录因子。在这里,我们描述了对 Rox1 和 之间遗传相互作用的详细分析。在氟康唑存在的情况下,Rox1 功能丧失会恢复Δ突变体的 表达,并抑制 和 的表达,导致麦角固醇水平升高,毒性固醇 14α 甲基-麦角甾-8,24(28)-二烯-3β,6α-二醇水平降低,与Δ突变体相比。我们的观察结果表明 Rox1 是 基因生物合成的负调节剂,并表明 C. glabrata 中必须存在至少一种其他 基因生物合成的正向转录调节剂。Candida glabrata 是最重要的人类真菌病原体之一,对唑类抑制剂的敏感性降低麦角固醇生物合成。尽管麦角固醇是三种抗真菌药物中的两种的靶标,但相对而言,对该关键细胞途径的调控知之甚少。甾醇既是真核细胞膜的必需成分,也是潜在的毒素;因此,甾醇稳态对细胞功能至关重要。在这里,我们鉴定了 C. glabrata 中两种新的麦角固醇()生物合成基因表达的负调节剂。我们的结果还表明,除了 Upc2A(已知的 基因唯一激活剂)之外,该途径还必须存在其他正向调节因子。