Wu Minqiang, Li Tingxian, Wang Pengfei, Wu Si, Wang Ruzhu, Lin Jie
Institute of Refrigeration and Cryogenics School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
Research Center of Solar Power and Refrigeration, Shanghai Jiao Tong University, Shanghai, 200240, China.
Small. 2022 Mar;18(9):e2105647. doi: 10.1002/smll.202105647. Epub 2021 Dec 22.
Phase change materials (PCMs) are regarded as promising candidates for realizing zero-energy thermal management of electronic devices owing to their high thermal storage capacity and stable working temperature. However, PCM-based thermal management always suffers from the long-standing challenges of low thermal conductivity and liquid leakage of PCMs. Herein, a dual-encapsulation strategy to fabricate highly conductive and liquid-free phase change composites (PCCs) for thermal management by constructing a polyurethane/graphite nanoplatelets hybrid networks is reported. The PCM of polyethylene glycol (PEG) is first infiltrated into the cross-linked network of polyurethane (PU) to synthesize hybridized semi-interpenetrated composites (PEG@PU), and then incorporated with reticulated graphite nanoplatelets (RGNPs) via pressure-induced assembly to fabricate highly conductive PCCs (PEG@PU-RGNPs). The hybrid networks enable the PCCs to show excellent mechanical strength, liquid-free phase change, and stable thermal property. Notably, the dual-encapsulated PCCs exhibit high thermal and electrical conductivities up to 27.0 W m K and 51.0 S cm , superior to the state-of-the-art PEG-based PCCs. Furthermore, the PCC-based energy device is demonstrated for efficient battery thermal management toward versatile demands of active preheating at a cold environment and passive cooling at a hot ambient. Overall, this work provides a promising route for fabricating highly conductive and liquid-free PCCs toward thermal management.
相变材料(PCM)因其高蓄热能力和稳定的工作温度,被视为实现电子设备零能耗热管理的理想候选材料。然而,基于PCM的热管理一直面临着PCM导热率低和液体泄漏这两个长期存在的挑战。在此,我们报道了一种双封装策略,通过构建聚氨酯/石墨纳米片混合网络来制备用于热管理的高导电性且无液体的相变复合材料(PCC)。首先将聚乙二醇(PEG)相变材料渗入聚氨酯(PU)的交联网络中,合成杂化半互穿复合材料(PEG@PU),然后通过压力诱导组装将其与网状石墨纳米片(RGNP)结合,制备出高导电性的PCC(PEG@PU-RGNPs)。这种混合网络使PCC具有优异的机械强度、无液体相变和稳定的热性能。值得注意的是,这种双封装的PCC表现出高达27.0 W m K的高导热率和51.0 S cm的高电导率,优于目前最先进的基于PEG的PCC。此外,基于PCC的能量装置被证明可针对寒冷环境下的主动预热和炎热环境下的被动冷却等多种需求,实现高效的电池热管理。总体而言,这项工作为制备用于热管理的高导电性且无液体的PCC提供了一条有前景的途径。