Guo Ying, Zhang Shaoce, Zhang Rong, Wang Donghong, Zhu Daming, Wang Xuewan, Xiao Diwen, Li Na, Zhao Yuwei, Huang Zhaodong, Xu Wenjie, Chen Shuangming, Song Li, Fan Jun, Chen Qing, Zhi Chunyi
Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, Hong Kong.
Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
ACS Nano. 2022 Jan 25;16(1):655-663. doi: 10.1021/acsnano.1c08109. Epub 2021 Dec 22.
Electrocatalytic N oxidation (NOR) into nitrate is a potential alternative to the emerging electrochemical N reduction (NRR) into ammonia to achieve a higher efficiency and selectivity of artificial N fixation, as O from the competing oxygen evolution reaction (OER) potentially favors the oxygenation of NOR, which is different from the parasitic hydrogen evolution reaction (HER) for NRR. Here, we develop an atomically dispersed Fe-based catalyst on N-doped carbon nanosheets (AD-Fe NS) which exhibits an exceptional catalytic NOR capability with a record-high nitrate yield of 6.12 μ mol mg h (2.45 μ mol cm h) and Faraday efficiency of 35.63%, outperforming all reported NOR catalysts and most well-developed NRR catalysts. The isotopic labeling NOR test validates the N source of the resultant nitrate from the N electro-oxidation catalyzed by AD-Fe NS. Experimental and theoretical investigations identify Fe atoms in AD-Fe NS as active centers for NOR, which can effectively capture N molecules and elongate the N≡N bond by the hybridization between Fe 3d orbitals and N 2p orbitals. This hybridization activates N molecules and triggers the subsequent NOR. In addition, a NOR-related pathway has been proposed that reveals the positive effect of O derived from the parasitic OER on the NO formation.
将电催化氮氧化(NOR)转化为硝酸盐是一种潜在的替代方法,可替代新兴的将电化学氮还原(NRR)为氨的方法,以实现更高效率和选择性的人工固氮。由于来自竞争性析氧反应(OER)的氧可能有利于NOR的氧化,这与NRR中的寄生析氢反应(HER)不同。在此,我们在氮掺杂碳纳米片(AD-Fe NS)上开发了一种原子分散的铁基催化剂,该催化剂表现出卓越的催化NOR能力,硝酸盐产率达到创纪录的6.12 μmol mg⁻¹ h⁻¹(2.45 μmol cm⁻² h⁻¹),法拉第效率为35.63%,优于所有已报道的NOR催化剂和大多数成熟的NRR催化剂。同位素标记NOR测试验证了AD-Fe NS催化氮电氧化生成的硝酸盐的氮源。实验和理论研究确定AD-Fe NS中的铁原子为NOR的活性中心,其可以有效地捕获氮分子,并通过铁3d轨道与氮2p轨道的杂化拉长N≡N键。这种杂化激活了氮分子并引发随后的NOR。此外,还提出了一条与NOR相关的途径,揭示了寄生OER产生的氧对NO形成的积极作用。