Huddart B M, Onuorah I J, Isah M M, Bonfà P, Blundell S J, Clark S J, De Renzi R, Lancaster T
Department of Physics, Centre for Materials Physics, Durham University, Durham DH1 3LE, United Kingdom.
Department of Mathematical, Physical and Computer Sciences, University of Parma, 43124 Parma, Italy.
Phys Rev Lett. 2021 Dec 3;127(23):237002. doi: 10.1103/PhysRevLett.127.237002.
We present a systematic investigation of muon-stopping states in superconductors that reportedly exhibit spontaneous magnetic fields below their transition temperatures due to time-reversal symmetry breaking. These materials include elemental rhenium, several intermetallic systems, and Sr_{2}RuO_{4}. We demonstrate that the presence of the muon leads to only a limited and relatively localized perturbation to the local crystal structure, while any small changes to the electronic structure occur several electron volts below the Fermi energy, leading to only minimal changes in the charge density on ions close to the muon. Our results imply that the muon-induced perturbation alone is unlikely to lead to the observed spontaneous fields in these materials, whose origin is more likely intrinsic to the time-reversal symmetry-broken superconducting state.
我们对超导体中的μ子停止态进行了系统研究,据报道,由于时间反演对称性破缺,这些超导体在其转变温度以下会表现出自发磁场。这些材料包括元素铼、几种金属间化合物体系以及Sr₂RuO₄。我们证明,μ子的存在只会对局部晶体结构产生有限且相对局部的扰动,而电子结构的任何微小变化都发生在费米能以下几电子伏特处,导致靠近μ子的离子上的电荷密度仅有极小变化。我们的结果表明,仅μ子诱导的扰动不太可能导致这些材料中观测到的自发磁场,其起源更可能是时间反演对称性破缺的超导态所固有的。