Suppr超能文献

通过扭曲苝二酰亚胺制备高性能有机电子材料。

High-Performance Organic Electronic Materials by Contorting Perylene Diimides.

作者信息

Schaack Cedric, Evans Austin M, Ng Fay, Steigerwald Michael L, Nuckolls Colin

机构信息

Department of Chemistry, Columbia University, Havemeyer Mail Code 3130, 3000 Broadway, New York, New York 10027, United States.

出版信息

J Am Chem Soc. 2022 Jan 12;144(1):42-51. doi: 10.1021/jacs.1c11544. Epub 2021 Dec 23.

Abstract

Perylene diimide (PDI) is a workhorse of the organic electronics community. However, the vast majority of designs that include PDI substitute the core with various functional groups to encourage intimate cofacial contacts between largely planar PDIs. Over the past several years, we have observed the counterintuitive result that contorting the planar aromatic core of PDI leads to higher performing photovoltaics, photodetectors, batteries, and other organic electronic devices. In this Perspective, we describe how different modes of contortion can be reliably installed into PDI-based molecules, oligomers, and polymers. We also describe how these different contortions modify the observed optical and electronic properties of PDI. For instance, contorting PDIs into bowls leads to high-efficiency singlet fission materials, while contorting PDIs into helicene-like structures leads to nonlinear amplification of Cotton effects, culminating in the highest -factors so far observed for organic compounds. Finally, we show how these unique optoelectronic properties give rise to higher performance organic electronic devices. We specifically note how the three-dimensional structure of these contorted aromatic molecules is responsible for the enhancements in performance we observe. Throughout this Perspective, we highlight opportunities for continued study in this rapidly developing organic materials frontier.

摘要

苝二酰亚胺(PDI)是有机电子领域的常用材料。然而,绝大多数包含PDI的设计都是用各种官能团取代其核心,以促进基本上呈平面状的PDI之间紧密的共面接触。在过去几年中,我们观察到了一个与直觉相反的结果,即扭曲PDI的平面芳香核会导致性能更高的光伏器件、光电探测器、电池及其他有机电子器件。在这篇综述文章中,我们描述了如何将不同的扭曲模式可靠地引入基于PDI的分子、低聚物和聚合物中。我们还描述了这些不同的扭曲如何改变所观察到的PDI的光学和电子性质。例如,将PDI扭曲成碗状会得到高效的单线态裂变材料,而将PDI扭曲成类螺旋烯结构会导致科顿效应的非线性放大,最终得到了目前有机化合物中观察到的最高的g因子。最后,我们展示了这些独特的光电性质如何产生性能更高的有机电子器件。我们特别指出,这些扭曲的芳香分子的三维结构是我们所观察到的性能提升的原因。在这篇综述文章中,我们强调了在这个快速发展的有机材料前沿领域持续研究的机会。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验