Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.
School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan.
Phys Chem Chem Phys. 2022 Mar 9;24(10):5786-5793. doi: 10.1039/d1cp05175j.
The infrared (IR) spectra of gas phase protonated nicotine has been measured in the never-before probed N-H "fingerprint region" (3200-3500 cm). The protonated molecules generated by an electrospray source are thermalized in the first ion trap with water vapor and He gas at a pre-determined temperature prior to being probed by IR spectroscopy in the second ion trap at 4 K. The IR spectra exhibit two N-H stretching bands which are assigned to the pyridine and pyrrolidine protomers with the aid of high-level electronic structure calculations. This finding is in sharp contrast to previous spectroscopic studies that suggested a single population of the pyridine protomer. The relative populations of the two protomers vary by changing the temperature of the thermalizing trap from 180-300 K. The relative conformer populations at 240 K and 300 K are well reproduced by the theoretical calculations, unequivocally determining that gas phase nicotine is a 3 : 2 mixture of both pyridine and pyrrolidine protomers at room temperature. The thermalizing anhydrous vapor does not result in any population change. It rather demonstrates the catalytic role of water in achieving equilibrium between the two protomers. The combination of IR spectroscopy and electronic structure calculations establish the small energy difference between the pyridine and pyrrolidine protomers in nicotine. One of the gas phase nicotine pyrrolidine protomers has the closest conformational resemblance among all low-lying energy isomers with the X-ray structure of nicotine in the nicotinic acetylcholine receptor (nAChR).
气相质子化尼古丁的红外(IR)光谱已在从未探测过的 N-H“指纹区”(3200-3500cm)进行了测量。通过电喷雾源生成的质子化分子在第一离子阱中与水蒸气和氦气在预定温度下热化,然后在 4K 的第二离子阱中通过红外光谱进行探测。IR 光谱显示出两个 N-H 伸缩带,借助于高水平的电子结构计算,将其分配给吡啶和吡咯烷质子化单体。这一发现与以前的光谱研究形成鲜明对比,以前的研究表明只有吡啶质子化单体的单一存在。通过改变热化阱的温度(180-300K),两种质子化单体的相对丰度会发生变化。在 240K 和 300K 时的相对构象丰度通过理论计算得到了很好的重现,这明确地确定了气相尼古丁在室温下是吡啶和吡咯烷质子化单体的 3:2 混合物。未水合的干燥蒸汽的热化不会导致任何丰度变化。它反而证明了水在两种质子化单体之间达到平衡中的催化作用。IR 光谱和电子结构计算的结合确立了尼古丁中吡啶和吡咯烷质子化单体之间的小能量差异。气相尼古丁吡咯烷质子化单体之一与烟碱乙酰胆碱受体(nAChR)中尼古丁的 X 射线结构具有所有低能异构体中最接近的构象相似性。