文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

比较蛋白质组分析表明涡虫头部和尾部再生之间的差异。

Comparative Proteome Analysis Indicates The Divergence between The Head and Tail Regeneration in Planarian.

作者信息

Chen Xiaoguang, Liu Yumei, Zhu Xuemin, Lv Qiongxia

机构信息

Animal Science and Technology School, Henan University of Science and Technology, Luoyang, China. Email:

Animal Science and Technology School, Henan University of Science and Technology, Luoyang, China.

出版信息

Cell J. 2021 Nov;23(6):640-649. doi: 10.22074/cellj.2021.7689. Epub 2021 Nov 23.


DOI:10.22074/cellj.2021.7689
PMID:34939757
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8665983/
Abstract

OBJECTIVE: Even a small fragment from the body of planarian can regenerate an entire animal, implying that the different fragments from this flatworm eventually reach the same solution. In this study, our aim was to reveal the differences and similarities in mechanisms between different regenerating fragments from this worm. MATERIALS AND METHODS: In this experimental study, we profiled the dynamic proteome of regenerating head and tail to reveal the differences and similarities between different regenerating fragments using 2-DE combined with MALDITOF/ TOF MS. RESULTS: Proteomic profiles of head and tail regeneration identified a total of 516 differential expressed proteins (DEPs) and showed a great difference in quantity and fold changes of proteome profiles between the two scenarios. Briefly, out of the 516 DEPs, 314 were identified to be specific for anterior regeneration, while 165 were specific for posterior regeneration. Bioinformatics analysis showed a wide discrepancy in biological activities between two regenerative processes; especially, differentiation and development and signal transduction in head regeneration were much more complex than that in tail regeneration. Protein functional analysis combined with protein-protein interaction (PPI) analysis showed a significant contribution of both Wnt and BMP signaling pathways to head regeneration not but tail regeneration. Additionally, several novel proteins showed completely opposite expression between head and tail regeneration. CONCLUSION: Proteomic profiles of head and tail regeneration identified a total of 516 differential expressed proteins (DEPs) and showed a great difference in quantity and fold changes of proteome profiles between the two scenarios. Briefly, out of the 516 DEPs, 314 were identified to be specific for anterior regeneration, while 165 were specific for posterior regeneration. Bioinformatics analysis showed a wide discrepancy in biological activities between two regenerative processes; especially, differentiation and development and signal transduction in head regeneration were much more complex than that in tail regeneration. Protein functional analysis combined with protein-protein interaction (PPI) analysis showed a significant contribution of both Wnt and BMP signaling pathways to head regeneration not but tail regeneration. Additionally, several novel proteins showed completely opposite expression between head and tail regeneration.

摘要

目的:即使是涡虫身体的一小片段也能再生出完整的动物,这意味着这种扁虫的不同片段最终会达到相同的结果。在本研究中,我们的目的是揭示这种蠕虫不同再生片段之间机制的差异和相似性。 材料与方法:在本实验研究中,我们对再生头部和尾部的动态蛋白质组进行了分析,以使用二维电泳结合基质辅助激光解吸电离飞行时间质谱(MALDI-TOF/TOF MS)揭示不同再生片段之间的差异和相似性。 结果:头部和尾部再生的蛋白质组学图谱共鉴定出516个差异表达蛋白(DEP),并且在两种情况下蛋白质组图谱的数量和倍数变化存在很大差异。简而言之,在这516个DEP中,314个被鉴定为前部再生所特有,而165个为后部再生所特有。生物信息学分析表明,两个再生过程的生物活性存在很大差异;特别是,头部再生中的分化、发育和信号转导比尾部再生复杂得多。蛋白质功能分析结合蛋白质-蛋白质相互作用(PPI)分析表明,Wnt和BMP信号通路对头部再生有显著贡献,而对尾部再生没有。此外,几种新蛋白在头部和尾部再生之间表现出完全相反的表达。 结论:头部和尾部再生的蛋白质组学图谱共鉴定出516个差异表达蛋白(DEP),并且在两种情况下蛋白质组图谱的数量和倍数变化存在很大差异。简而言之,在这516个DEP中,314个被鉴定为前部再生所特有,而165个为后部再生所特有。生物信息学分析表明,两个再生过程的生物活性存在很大差异;特别是,头部再生中的分化、发育和信号转导比尾部再生复杂得多。蛋白质功能分析结合蛋白质-蛋白质相互作用(PPI)分析表明,Wnt和BMP信号通路对头部再生有显著贡献,而对尾部再生没有。此外,几种新蛋白在头部和尾部再生之间表现出完全相反的表达。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebe7/8665983/b43e75736efd/Cell-J-23-640-g06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebe7/8665983/8716ca783e5e/Cell-J-23-640-g01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebe7/8665983/1c885762f25b/Cell-J-23-640-g02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebe7/8665983/bdb6682e8fcc/Cell-J-23-640-g03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebe7/8665983/ae2897a77f0c/Cell-J-23-640-g04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebe7/8665983/3068052e58f1/Cell-J-23-640-g05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebe7/8665983/b43e75736efd/Cell-J-23-640-g06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebe7/8665983/8716ca783e5e/Cell-J-23-640-g01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebe7/8665983/1c885762f25b/Cell-J-23-640-g02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebe7/8665983/bdb6682e8fcc/Cell-J-23-640-g03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebe7/8665983/ae2897a77f0c/Cell-J-23-640-g04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebe7/8665983/3068052e58f1/Cell-J-23-640-g05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebe7/8665983/b43e75736efd/Cell-J-23-640-g06.jpg

相似文献

[1]
Comparative Proteome Analysis Indicates The Divergence between The Head and Tail Regeneration in Planarian.

Cell J. 2021-11

[2]
The planarian regeneration transcriptome reveals a shared but temporally shifted regulatory program between opposing head and tail scenarios.

BMC Genomics. 2013-11-16

[3]
Proteomic Analysis Reveals the Contribution of TGFβ/Smad4 Signaling Pathway to Cell Differentiation During Planarian Tail Regeneration.

Appl Biochem Biotechnol. 2017-6

[4]
Protein expression profiling in head fragments during planarian regeneration after amputation.

Dev Genes Evol. 2015-4

[5]
The molecular logic for planarian regeneration along the anterior-posterior axis.

Nature. 2013-7-24

[6]
Reactivating head regrowth in a regeneration-deficient planarian species.

Nature. 2013-7-24

[7]
Identification and characterization of a fibroblast growth factor gene in the planarian Dugesia japonica.

Dev Growth Differ. 2020-12

[8]
zic-1 Expression in Planarian neoblasts after injury controls anterior pole regeneration.

PLoS Genet. 2014-7-3

[9]
Role of MEKK1 in the anterior-posterior patterning during planarian regeneration.

Dev Growth Differ. 2018-8

[10]
Comparative proteomic analysis of tail regeneration in the green anole lizard, .

Nat Sci (Weinh). 2024-1

本文引用的文献

[1]
kinase negatively regulates regenerative neurogenesis in planarians.

Elife. 2020-1-20

[2]
Opposite effects of low intensity light of different wavelengths on the planarian regeneration rate.

J Photochem Photobiol B. 2019-12-3

[3]
Bioelectrical model of head-tail patterning based on cell ion channels and intercellular gap junctions.

Bioelectrochemistry. 2019-11-29

[4]
Genetics and functions of the retinoic acid pathway, with special emphasis on the eye.

Hum Genomics. 2019-12-3

[5]
A small set of conserved genes, including sp5 and Hox, are activated by Wnt signaling in the posterior of planarians and acoels.

PLoS Genet. 2019-10-18

[6]
Wnt, Notch, and TGF-β Pathways Impinge on Hedgehog Signaling Complexity: An Open Window on Cancer.

Front Genet. 2019-8-21

[7]
From worm to germ: Germ cell development and regeneration in planarians.

Curr Top Dev Biol. 2019-5-2

[8]
Planarian Stem Cell Heterogeneity.

Adv Exp Med Biol. 2019

[9]
The (pro)renin receptor: an emerging player in hypertension and metabolic syndrome.

Kidney Int. 2019-2-26

[10]
The Role of Early Bioelectric Signals in the Regeneration of Planarian Anterior/Posterior Polarity.

Biophys J. 2019-2-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索