Suppr超能文献

分子质量驱动溶解性有机磷在湖泊沉积物中的生物可利用性及其内在降解机制。

Molecular weight driving bioavailability and intrinsic degradation mechanisms of dissolved organic phosphorus in lake sediment.

机构信息

Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, China.

College of Resource Environment and Tousism, Capital Normal University, Beijing 100048, China.

出版信息

Water Res. 2022 Feb 15;210:117951. doi: 10.1016/j.watres.2021.117951. Epub 2021 Dec 8.

Abstract

The sediment dissolved organic phosphorus (DOP) for the "internal phosphorus (P) loading" has raised intensive concern, but its bioavailability and intrinsic degradation mechanism have not been fully elucidated. In this work, multi-techniques were combined to construct the response of sediments DOP's bioavailability to molecular weight (MW) based on ten lakes of China, thereby elucidating the intrinsic degradation mechanism of sediment DOP. A high percentage (74.5% on average) and significantly positive correlations with respect to different MWs were observed, highlighting the importance of DOP to dissolved P in sediments. DOP is mainly composed of a low MW (LMW) portion (63.8%) and the substances are primarily derived from microbial sources. Bioavailable DOP species were closely related to MW, with labile monoester P and diester P decreased with decreasing MW. Analysis of environmental processes showed that microbial utilization capacity and the characteristics of dissolved organic matter (DOM) with different MWs were the dominant drivers in determining the bioavailability of DOP. That is, microorganisms exhibit high DOM utilization capacity in LMW portion, promoting the degradation and transformation of bioavailable DOP species. Furthermore, the increased humic and fulvic-like substances by microbial degradation might in turn inhibit the enzymatic hydrolysis of LMW-DOP. This pattern explains why the contents of LMW-DOP are very high, but it contains less bioavailable DOP. By studying the bioavailability of sediment DOPs with different MWs, it is found that, under natural conditions, labile monoester and diester P in LMW-DOP have a high tendency to degrade than those in HMW-DOP. The results further show that, microbial utilization and DOM characteristics, as well as their linkage with DOP's bioavailability and degradability, have important implications for assessing DOP's degradation potential. The insights from this study might shed light on more effective strategies for mitigating the risks of "internal P loading".

摘要

沉积物溶解态有机磷(DOP)作为“内部磷(P)负荷”引起了广泛关注,但它的生物可利用性和内在降解机制尚未完全阐明。本研究结合多种技术,基于中国的十个湖泊构建了沉积物 DOP 生物可利用性与分子量(MW)的响应关系,从而阐明了沉积物 DOP 的内在降解机制。观察到与不同 MW 呈高度正相关(平均 74.5%),突出了 DOP 对沉积物中溶解 P 的重要性。DOP 主要由低分子量(LMW)部分组成(63.8%),这些物质主要来自微生物源。可利用的 DOP 物种与 MW 密切相关,随着 MW 的降低,易生物降解的单酯 P 和二酯 P 减少。环境过程分析表明,微生物利用能力和不同 MW 的溶解有机物质(DOM)特性是决定 DOP 生物可利用性的主要驱动因素。也就是说,微生物在 LMW 部分表现出较高的 DOM 利用能力,促进了可利用的 DOP 物种的降解和转化。此外,微生物降解产生的腐殖质和富里酸样物质的增加可能反过来抑制 LMW-DOP 的酶水解。这种模式解释了为什么 LMW-DOP 的含量非常高,但它所含的可利用 DOP 较少。通过研究不同 MW 沉积物 DOP 的生物可利用性,发现在自然条件下,LMW-DOP 中的易生物降解单酯和二酯 P 比 HMW-DOP 中的更倾向于降解。结果进一步表明,微生物利用和 DOM 特性及其与 DOP 生物可利用性和可降解性的联系,对评估 DOP 的降解潜力具有重要意义。本研究的结果可能为减轻“内部 P 负荷”风险提供更有效的策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验