Suppr超能文献

The influence of semicircular canal morphology on endolymph flow dynamics. An anatomically descriptive mathematical model.

作者信息

Oman C M, Marcus E N, Curthoys I S

出版信息

Acta Otolaryngol. 1987 Jan-Feb;103(1-2):1-13. doi: 10.3109/00016488709134691.

Abstract

The classic Steinhausen/Groen mathematical description of endolymph flow in a toroidal semicircular canal is extended to the case where the size, shape, and curvature of the canal lumen change continuously through the duct, utricle, and ampulla. The resulting second-order differential equation has three coefficients, unlike the equation of a torsion pendulum, which has only two. The salient anatomical parameters which determine endolymph motion are: the length of the central streamline occupying the center of the canal lumen; the area enclosed by this streamline as projected into the plane of rotation; the average inverse cross-sectional area of the lumen (taken around the central streamline); and the average inverse squared cross-sectional area, weighted by a local wall shape factor. These parameters are evaluated and the average displacement of the face of the cupula is estimated for the human, guinea pig, and rat, based on new anatomical data presented in companion papers. The model predicts that the dynamic range of human average cupula motion lies between 520 A and 10 microns.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验