Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA.
Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA.
Biomolecules. 2021 Dec 8;11(12):1846. doi: 10.3390/biom11121846.
Lysyl oxidase-like 2 (LOXL2) has emerged as a promising therapeutic target against metastatic/invasive tumors and organ and tissue fibrosis. LOXL2 catalyzes the oxidative deamination of lysine and hydroxylysine residues in extracellular matrix (ECM) proteins to promote crosslinking of these proteins, and thereby plays a major role in ECM remodeling. LOXL2 secretes as 100-kDa full-length protein (fl-LOXL2) and then undergoes proteolytic cleavage of the first two scavenger receptor cysteine-rich (SRCR) domains to yield 60-kDa protein (Δ1-2SRCR-LOXL2). This processing does not affect the amine oxidase activity of LOXL2 in vitro. However, the physiological importance of this cleavage still remains elusive. In this study, we focused on characterization of biophysical properties of fl- and Δ1-2SRCR-LOXL2s (e.g., oligomeric states, molecular weights, and hydrodynamic radii in solution) to gain insight into the structural role of the first two SRCR domains. Our study reveals that fl-LOXL2 exists predominantly as monomer but also dimer to the lesser extent when its concentration is <~1 mM. The hydrodynamic radius () determined by multi-angle light scattering coupled with size exclusion chromatography (SEC-MALS) indicates that fl-LOXL2 is a moderately asymmetric protein. In contrast, Δ1-2SRCR-LOXL2 exists solely as monomer and its is in good agreement with the predicted value. The values calculated from a 3D modeled structure of fl-LOXL2 and the crystal structure of the precursor Δ1-2SRCR-LOXL2 are within a reasonable margin of error of the values determined by SEC-MALS for fl- and Δ1-2SRCR-LOXL2s in mature forms in this study. Based on superimposition of the 3D model and the crystal structure of Δ1-2SRCR-LOXL2 (PDB:5ZE3), we propose a configuration of fl-LOXL2 that explains the difference observed in between fl- and Δ1-2SRCR-LOXL2s in solution.
赖氨酰氧化酶样蛋白 2(LOXL2)已成为一种有前途的治疗转移性/侵袭性肿瘤以及器官和组织纤维化的治疗靶点。LOXL2 催化细胞外基质(ECM)蛋白中赖氨酸和羟赖氨酸残基的氧化脱氨作用,促进这些蛋白质的交联,从而在 ECM 重塑中发挥主要作用。LOXL2 以 100kDa 的全长蛋白(fl-LOXL2)分泌,然后通过两个清道夫受体富含半胱氨酸(SRCR)结构域的蛋白水解切割,产生 60kDa 的蛋白(Δ1-2SRCR-LOXL2)。这种处理不会影响 LOXL2 在体外的胺氧化酶活性。然而,这种切割的生理重要性仍然难以捉摸。在这项研究中,我们专注于 fl- 和 Δ1-2SRCR-LOXL2 的生物物理特性(例如,寡聚状态、分子量和溶液中的流体力学半径)的表征,以深入了解前两个 SRCR 结构域的结构作用。我们的研究表明,fl-LOXL2 主要以单体形式存在,但当浓度<~1mM 时,也以较少的二聚体形式存在。多角光散射与尺寸排阻色谱(SEC-MALS)相结合确定的流体力学半径()表明,fl-LOXL2 是一种中等不对称的蛋白质。相比之下,Δ1-2SRCR-LOXL2 仅以单体形式存在,其与预测值一致。从 fl-LOXL2 的 3D 模型和前体 Δ1-2SRCR-LOXL2 的晶体结构计算的理论值与本研究中成熟形式的 fl- 和 Δ1-2SRCR-LOXL2s 通过 SEC-MALS 确定的值在合理的误差范围内。基于 fl-LOXL2 的 3D 模型和 Δ1-2SRCR-LOXL2 的晶体结构(PDB:5ZE3)的叠加,我们提出了 fl-LOXL2 的一种构象,该构象解释了在溶液中 fl- 和 Δ1-2SRCR-LOXL2 之间观察到的差异。