Suppr超能文献

是什么驱动比特币?一种基于连续局部转移熵和深度学习分类模型的方法。

What Drives Bitcoin? An Approach from Continuous Local Transfer Entropy and Deep Learning Classification Models.

作者信息

García-Medina Andrés, Luu Duc Huynh Toan

机构信息

Unidad Monterrey, Centro de Investigación en Matemáticas, A.C. Av. Alianza Centro 502, PIIT, Apodaca 66628, Mexico.

Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Ciudad de México 03940, Mexico.

出版信息

Entropy (Basel). 2021 Nov 26;23(12):1582. doi: 10.3390/e23121582.

Abstract

Bitcoin has attracted attention from different market participants due to unpredictable price patterns. Sometimes, the price has exhibited big jumps. Bitcoin prices have also had extreme, unexpected crashes. We test the predictive power of a wide range of determinants on bitcoins' price direction under the continuous transfer entropy approach as a feature selection criterion. Accordingly, the statistically significant assets in the sense of permutation test on the nearest neighbour estimation of local transfer entropy are used as features or explanatory variables in a deep learning classification model to predict the price direction of bitcoin. The proposed variable selection do not find significative the explanatory power of NASDAQ and Tesla. Under different scenarios and metrics, the best results are obtained using the significant drivers during the pandemic as validation. In the test, the accuracy increased in the post-pandemic scenario of July 2020 to January 2021 without drivers. In other words, our results indicate that in times of high volatility, Bitcoin seems to self-regulate and does not need additional drivers to improve the accuracy of the price direction.

摘要

比特币因其不可预测的价格模式吸引了不同市场参与者的关注。有时,价格会出现大幅跳涨。比特币价格也曾出现极端、意外的暴跌。我们在连续转移熵方法作为特征选择标准的情况下,测试了一系列决定因素对比特币价格走势的预测能力。相应地,在局部转移熵的最近邻估计的排列检验中有统计学意义的资产被用作深度学习分类模型中的特征或解释变量,以预测比特币的价格走势。所提出的变量选择未发现纳斯达克和特斯拉具有显著的解释力。在不同场景和指标下,以疫情期间的显著驱动因素作为验证可获得最佳结果。在测试中,2020年7月至2021年1月的疫情后无驱动因素的情况下准确率有所提高。换句话说,我们的结果表明,在高波动时期,比特币似乎能自我调节,不需要额外驱动因素来提高价格走势预测的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d698/8700167/73b66f9cf660/entropy-23-01582-g001.jpg

相似文献

3

引用本文的文献

1
An analysis of investors' behavior in Bitcoin market.比特币市场中投资者行为分析。
PLoS One. 2022 Mar 10;17(3):e0264522. doi: 10.1371/journal.pone.0264522. eCollection 2022.

本文引用的文献

2
Explainable AI in Fintech Risk Management.金融科技风险管理中的可解释人工智能
Front Artif Intell. 2020 Apr 24;3:26. doi: 10.3389/frai.2020.00026. eCollection 2020.
4
Statistical Analysis of the Exchange Rate of Bitcoin.比特币汇率的统计分析
PLoS One. 2015 Jul 29;10(7):e0133678. doi: 10.1371/journal.pone.0133678. eCollection 2015.
6
Local information transfer as a spatiotemporal filter for complex systems.作为复杂系统时空滤波器的局部信息传递
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Feb;77(2 Pt 2):026110. doi: 10.1103/PhysRevE.77.026110. Epub 2008 Feb 15.
7
Estimating mutual information.估计互信息。
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 Pt 2):066138. doi: 10.1103/PhysRevE.69.066138. Epub 2004 Jun 23.
8
Measuring information transfer.测量信息传递。
Phys Rev Lett. 2000 Jul 10;85(2):461-4. doi: 10.1103/PhysRevLett.85.461.
9
Long short-term memory.长短期记忆
Neural Comput. 1997 Nov 15;9(8):1735-80. doi: 10.1162/neco.1997.9.8.1735.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验