García-Medina Andrés, Luu Duc Huynh Toan
Unidad Monterrey, Centro de Investigación en Matemáticas, A.C. Av. Alianza Centro 502, PIIT, Apodaca 66628, Mexico.
Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Ciudad de México 03940, Mexico.
Entropy (Basel). 2021 Nov 26;23(12):1582. doi: 10.3390/e23121582.
Bitcoin has attracted attention from different market participants due to unpredictable price patterns. Sometimes, the price has exhibited big jumps. Bitcoin prices have also had extreme, unexpected crashes. We test the predictive power of a wide range of determinants on bitcoins' price direction under the continuous transfer entropy approach as a feature selection criterion. Accordingly, the statistically significant assets in the sense of permutation test on the nearest neighbour estimation of local transfer entropy are used as features or explanatory variables in a deep learning classification model to predict the price direction of bitcoin. The proposed variable selection do not find significative the explanatory power of NASDAQ and Tesla. Under different scenarios and metrics, the best results are obtained using the significant drivers during the pandemic as validation. In the test, the accuracy increased in the post-pandemic scenario of July 2020 to January 2021 without drivers. In other words, our results indicate that in times of high volatility, Bitcoin seems to self-regulate and does not need additional drivers to improve the accuracy of the price direction.
比特币因其不可预测的价格模式吸引了不同市场参与者的关注。有时,价格会出现大幅跳涨。比特币价格也曾出现极端、意外的暴跌。我们在连续转移熵方法作为特征选择标准的情况下,测试了一系列决定因素对比特币价格走势的预测能力。相应地,在局部转移熵的最近邻估计的排列检验中有统计学意义的资产被用作深度学习分类模型中的特征或解释变量,以预测比特币的价格走势。所提出的变量选择未发现纳斯达克和特斯拉具有显著的解释力。在不同场景和指标下,以疫情期间的显著驱动因素作为验证可获得最佳结果。在测试中,2020年7月至2021年1月的疫情后无驱动因素的情况下准确率有所提高。换句话说,我们的结果表明,在高波动时期,比特币似乎能自我调节,不需要额外驱动因素来提高价格走势预测的准确性。