Suppr超能文献

作为充血性心力衰竭新筛查方法的心率波动规律相似性变化分析

Similarity Changes Analysis for Heart Rate Fluctuation Regularity as a New Screening Method for Congestive Heart Failure.

作者信息

Liu Zeming, Chen Tian, Wei Keming, Liu Guanzheng, Liu Bin

机构信息

School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.

School of Science, Hua Zhong Agricultural University, Wuhan 430070, China.

出版信息

Entropy (Basel). 2021 Dec 11;23(12):1669. doi: 10.3390/e23121669.

Abstract

Congestive heart failure (CHF) is a chronic cardiovascular condition associated with dysfunction of the autonomic nervous system (ANS). Heart rate variability (HRV) has been widely used to assess ANS. This paper proposes a new HRV analysis method, which uses information-based similarity (IBS) transformation and fuzzy approximate entropy (fApEn) algorithm to obtain the fApEn_IBS index, which is used to observe the complexity of autonomic fluctuations in CHF within 24 h. We used 98 ECG records (54 health records and 44 CHF records) from the PhysioNet database. The fApEn_IBS index was statistically significant between the control and CHF groups ( < 0.001). Compared with the classical indices low-to-high frequency power ratio (LF/HF) and IBS, the fApEn_IBS index further utilizes the changes in the rhythm of heart rate (HR) fluctuations between RR intervals to fully extract relevant information between adjacent time intervals and significantly improves the performance of CHF screening. The CHF classification accuracy of fApEn_IBS was 84.69%, higher than LF/HF (77.55%) and IBS (83.67%). Moreover, the combination of IBS, fApEn_IBS, and LF/HF reached the highest CHF screening accuracy (98.98%) with the random forest (RF) classifier, indicating that the IBS and LF/HF had good complementarity. Therefore, fApEn_IBS effusively reflects the complexity of autonomic nerves in CHF and is a valuable CHF assessment tool.

摘要

充血性心力衰竭(CHF)是一种与自主神经系统(ANS)功能障碍相关的慢性心血管疾病。心率变异性(HRV)已被广泛用于评估自主神经系统。本文提出了一种新的HRV分析方法,该方法使用基于信息的相似度(IBS)变换和模糊近似熵(fApEn)算法来获得fApEn_IBS指数,用于观察CHF患者24小时内自主波动的复杂性。我们使用了来自PhysioNet数据库的98份心电图记录(54份健康记录和44份CHF记录)。fApEn_IBS指数在对照组和CHF组之间具有统计学意义(<0.001)。与经典指标低频与高频功率比(LF/HF)和IBS相比,fApEn_IBS指数进一步利用RR间期中心率(HR)波动节律的变化,充分提取相邻时间间隔之间的相关信息,显著提高了CHF筛查的性能。fApEn_IBS的CHF分类准确率为84.69%,高于LF/HF(77.55%)和IBS(83.67%)。此外,IBS、fApEn_IBS和LF/HF的组合在随机森林(RF)分类器下达到了最高的CHF筛查准确率(98.98%),表明IBS和LF/HF具有良好的互补性。因此,fApEn_IBS充分反映了CHF患者自主神经的复杂性,是一种有价值的CHF评估工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/798f/8700114/9f6c3d4a3db8/entropy-23-01669-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验