Suppr超能文献

使用神经影像学预测肥胖症治疗反应的计算方法。

Computational approaches to predicting treatment response to obesity using neuroimaging.

机构信息

Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Clinic of Endocrinology, Diabetes and Metabolism, 10117, Berlin, Germany.

Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Center for Cardiovascular Research, 10117, Berlin, Germany.

出版信息

Rev Endocr Metab Disord. 2022 Aug;23(4):773-805. doi: 10.1007/s11154-021-09701-w. Epub 2021 Dec 23.

Abstract

Obesity is a worldwide disease associated with multiple severe adverse consequences and comorbid conditions. While an increased body weight is the defining feature in obesity, etiologies, clinical phenotypes and treatment responses vary between patients. These variations can be observed within individual treatment options which comprise lifestyle interventions, pharmacological treatment, and bariatric surgery. Bariatric surgery can be regarded as the most effective treatment method. However, long-term weight regain is comparably frequent even for this treatment and its application is not without risk. A prognostic tool that would help predict the effectivity of the individual treatment methods in the long term would be essential in a personalized medicine approach. In line with this objective, an increasing number of studies have combined neuroimaging and computational modeling to predict treatment outcome in obesity. In our review, we begin by outlining the central nervous mechanisms measured with neuroimaging in these studies. The mechanisms are primarily related to reward-processing and include "incentive salience" and psychobehavioral control. We then present the diverse neuroimaging methods and computational prediction techniques applied. The studies included in this review provide consistent support for the importance of incentive salience and psychobehavioral control for treatment outcome in obesity. Nevertheless, further studies comprising larger sample sizes and rigorous validation processes are necessary to answer the question of whether or not the approach is sufficiently accurate for clinical real-world application.

摘要

肥胖是一种全球性疾病,与多种严重的不良后果和合并症有关。虽然体重增加是肥胖的定义特征,但病因、临床表型和治疗反应在患者之间存在差异。这些差异可以在个体治疗选择中观察到,包括生活方式干预、药物治疗和减肥手术。减肥手术可以被视为最有效的治疗方法。然而,即使对于这种治疗,长期体重反弹也相当常见,而且其应用并非没有风险。如果有一种预后工具可以帮助预测个体治疗方法在长期内的有效性,那么在个性化医疗方法中是至关重要的。为了实现这一目标,越来越多的研究将神经影像学和计算模型相结合,以预测肥胖症的治疗效果。在我们的综述中,我们首先概述了这些研究中使用神经影像学测量的中枢神经系统机制。这些机制主要与奖励处理有关,包括“激励显著性”和心理行为控制。然后,我们介绍了应用的各种神经影像学方法和计算预测技术。本综述中包含的研究为激励显著性和心理行为控制对肥胖症治疗效果的重要性提供了一致的支持。然而,为了回答这种方法是否足够准确以用于临床实际应用的问题,还需要进行包括更大样本量和严格验证过程的进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8746/9307532/d34a474a5e5d/11154_2021_9701_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验