Department of Construction, School of Technology, University of Extremadura, Avda. de la Universidad s/n, Cáceres, Spain.
Department of Construction, School of Technology, University of Extremadura, Avda. de la Universidad s/n, Cáceres, Spain.
Sci Total Environ. 2022 Mar 15;812:152312. doi: 10.1016/j.scitotenv.2021.152312. Epub 2021 Dec 23.
The goal of this study is to estimate the potential risk of exposure to urban green infrastructure by calculating and improving of AIROT index, adding meteorological factors as wind direction and updating the index to be more accurate for smaller urban green areas. To achieve this objective, BIM methodology has been applied by creating a 3D BIM model from the reality capture of a street with LiDAR. The BIM model contains the parametric data needed to apply AIROT index and it allows to map results in a graphic environmental sustainability study. The importance of location of green infrastructure is one of main conclusions obtained in order to minimize aerobiological risks in future new buildings or even in maintenance tasks of urban green infrastructure. A valuable result obtained from the developed methodology are walk simulations in the 3D model with the aim to identify high risk of potential exposure of urban green infrastructure with allergenic interest for allergic patients in order to supply health itineraries of pedestrians in a proposal of Smart City.
本研究的目的是通过计算和改进 AIROT 指数来估计接触城市绿色基础设施的潜在风险,加入气象因素如风的方向,并更新指数以使其更适用于较小的城市绿色区域。为了实现这一目标,应用了 BIM 方法,通过对带有 LiDAR 的街道进行现实捕捉创建了一个 3D BIM 模型。该 BIM 模型包含了应用 AIROT 指数所需的参数数据,并允许在图形环境可持续性研究中映射结果。获得的主要结论之一是绿色基础设施位置的重要性,以便在未来的新建筑中甚至在城市绿色基础设施的维护任务中最小化空气生物学风险。从开发的方法中获得的一个有价值的结果是在 3D 模型中进行步行模拟,目的是识别具有过敏兴趣的城市绿色基础设施的潜在暴露的高风险,以便为过敏患者提供行人的健康行程,作为智能城市的建议。