Mississippi School for Mathematics and Science, Columbus, MS 39701, United States of America.
College of Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China; Heilongjiang Province Technology Innovation Center of Mechanization and Materialization of Major Crops Production, Harbin, Heilongjiang 150030, PR China.
Sci Total Environ. 2022 Mar 20;813:152604. doi: 10.1016/j.scitotenv.2021.152604. Epub 2021 Dec 23.
It is challenging to produce economical magnetic graphene-based adsorbents on an industrial scale for heavy metal ions removal. Here, magnetite/graphene nanocomposite embedded in activated carbon matrix (magnetite/G-AC) was synthesized via in situ catalytic graphitization of iron-impregnated biochar to obtain graphene encapsulated iron nanoparticles (GEINs) embedded in biochar (BC) matrix, and followed by steam activation of GEINs-BC. Steam activation aimed to upgrade biochar to activated carbon with oxygen functional groups, crack encapsulated graphene shell to graphene nanosheets, and obtain magnetic FeO by oxidation of iron, thereby improving the adsorption capacity of magnetite/G-AC-800 (153.2 mg/g) four times higher than that of GEINs-BC. The parameters on the adsorption capacity were investigated using Pb(II) ions as a typical pollutant as a function of solution pH (3-7), contact time (5-300 min), initial Pb(II) concentration (50-400 mg/L), and adsorbent dosage (0.05-0.25 g). The fitted pseudo-second-order kinetic model and Langmuir model indicated that the main adsorption mechanism was chemical adsorption over monolayer. This research developed a low-cost magnetic adsorbent with the advantage of simple large-scale production and excellent adsorption capacity per unit cost for remediating wastewater.
在工业规模上生产经济实惠的磁性基于石墨烯的吸附剂以去除重金属离子具有挑战性。在这里,通过浸渍铁的生物炭的原位催化石墨化合成了嵌入在活性炭基质中的磁铁矿/石墨烯纳米复合材料(magnetite/G-AC),以获得石墨烯封装的铁纳米颗粒(GEINs)嵌入生物炭(BC)基质中,然后对 GEINs-BC 进行蒸汽活化。蒸汽活化旨在将生物炭升级为具有含氧官能团的活性炭,将封装的石墨烯壳裂化为石墨烯纳米片,并通过铁的氧化获得磁性 FeO,从而将 magnetite/G-AC-800(153.2 mg/g)的吸附容量提高了四倍,比 GEINs-BC 高。使用 Pb(II)离子作为典型污染物,研究了吸附容量的参数,作为溶液 pH 值(3-7)、接触时间(5-300 min)、初始 Pb(II)浓度(50-400 mg/L)和吸附剂用量(0.05-0.25 g)的函数。拟合的伪二阶动力学模型和 Langmuir 模型表明,主要吸附机制是单层的化学吸附。这项研究开发了一种具有成本效益的磁性吸附剂,其优点是生产简单、规模大,单位成本的吸附容量高,可用于修复废水。