Suppr超能文献

利用血浆游离 DNA 片段组学进行原发性肝癌的早期检测:一种超灵敏且经济实惠的检测方法。

Ultrasensitive and affordable assay for early detection of primary liver cancer using plasma cell-free DNA fragmentomics.

机构信息

Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.

Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, China.

出版信息

Hepatology. 2022 Aug;76(2):317-329. doi: 10.1002/hep.32308. Epub 2022 Jan 26.

Abstract

BACKGROUND AND AIMS

Early detection of primary liver cancer (PLC), including HCC, intrahepatic cholangiocarcinoma (ICC), and combined HCC-ICC (cHCC-ICC), is essential for patients' survival. This study aims to develop an accurate and affordable method for PLC early detection and differentiating ICC from HCC using plasma cell-free DNA (cfDNA) fragmentomic profiles.

APPROACH AND RESULTS

Whole-genome sequencings (WGS) were performed using plasma cfDNA samples from 192 patients with PLC (159 HCC, 26 ICC, 7 cHCC-ICC) and 170 noncancer controls (including 53 liver cirrhosis [LC] or HBV-positive) enrolled in the training cohort. An ensembled stacked model for PLC detection was constructed using the training cohort. The model performance was assessed in an independent test cohort (189 patients with PLC [157 HCC, 26 ICC, 6 cHCC-ICC], 164 noncancer controls [including 51 LC/HBV]). Our model showed excellent performance for cancer detection in the test cohort (AUC: 0.995, 96.8% sensitivity at 98.8% specificity). It showed excellent sensitivities in detecting early-stage PLC (I: 95.9%, II: 97.9%), small tumors (≤3 cm: 98.2%), and HCC (96.2%) or ICC (100%). The AUC for distinguishing PLC from LC/HBV reached 0.985 (96.8% specificity at 96.1% specificity). Promisingly, our model maintained consistent performances during the downsampling process, even using 1X coverage data (AUC: 0.994, 93.7% sensitivity at 98.8% specificity). A separate model showed potential for distinguishing ICC from HCC (AUC: 0.776).

CONCLUSIONS

Our model, outperforming previous reports at a lower cost by solely using low-coverage WGS data, exhibits excellent clinical potential for ultrasensitive and affordable detection of PLC and its subtypes.

摘要

背景和目的

早期发现原发性肝癌(PLC),包括肝细胞癌(HCC)、肝内胆管癌(ICC)和 HCC-ICC 混合型(cHCC-ICC),对患者的生存至关重要。本研究旨在开发一种准确且经济实惠的方法,通过血浆无细胞 DNA(cfDNA)片段组学谱来早期检测 PLC,并区分 ICC 和 HCC。

方法和结果

对来自 192 名 PLC 患者(159 例 HCC、26 例 ICC、7 例 cHCC-ICC)和 170 名非癌症对照者(包括 53 例肝硬化[LC]或 HBV 阳性)的血浆 cfDNA 样本进行全基因组测序(WGS)。使用训练队列构建了用于 PLC 检测的集成堆叠模型。在独立的测试队列(189 名 PLC 患者[157 例 HCC、26 例 ICC、6 例 cHCC-ICC],164 名非癌症对照者[包括 51 例 LC/HBV])中评估了模型性能。我们的模型在测试队列中表现出出色的癌症检测性能(AUC:0.995,98.8%特异性时的敏感性为 96.8%)。它在检测早期 PLC(I 期:95.9%,II 期:97.9%)、小肿瘤(≤3cm:98.2%)、HCC(96.2%)或 ICC(100%)方面具有出色的敏感性。区分 PLC 与 LC/HBV 的 AUC 达到 0.985(96.1%特异性时的特异性为 96.8%)。有希望的是,即使使用 1X 覆盖数据(AUC:0.994,98.8%特异性时的敏感性为 93.7%),我们的模型在降采样过程中仍保持一致的性能。另一个模型显示出区分 ICC 和 HCC 的潜力(AUC:0.776)。

结论

我们的模型仅使用低覆盖 WGS 数据,成本低于先前的报告,具有出色的临床潜力,可用于超灵敏且经济实惠地检测 PLC 及其亚型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验