Yang Maosheng, Li Tengteng, Yan Xin, Liang Lanju, Yao Haiyun, Sun Zhaoqing, Li Jing, Li Jie, Wei Dequan, Wang Meng, Ye Yunxia, Song Xiaoxian, Zhang Haiting, Yao Jianquan
Institute of Micro-Nano Optoelectronics and Terahertz Technology, and School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China.
College of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China.
ACS Appl Mater Interfaces. 2022 Jan 12;14(1):2155-2165. doi: 10.1021/acsami.1c15222. Epub 2021 Dec 27.
Perovskites and graphene are receiving a meteoric rise in popularity in the field of active photonics because they exhibit excellent optoelectronic properties for dynamic manipulation of light-matter interactions. However, challenges still exist, such as the instability of perovskites under ambient conditions and the low Fermi level of graphene in experiments. These shortcomings limit the scope of applications when they are used alone in advanced optical devices. However, the combination of graphene and perovskites is still a promising route for efficient control of light-matter interactions. Here, we report a dual-optoelectronic metadevice fabricated by integrating terahertz metasurfaces with a sandwich complex composed of graphene, polyimide, and perovskites for ultra-wideband and multidimensional manipulation of higher-order Fano resonances. Owing to the photogenerated carriers and electrostatic doping effect, the dual optoelectronic metadevice showed different manipulation behavior at thermal imbalance (electrostatic doping state of the system). The modulation depth of the transmission amplitude reached 200%, the total resonant frequency shift was 800 GHz, and the tunable range of the resonant frequency was 68.8%. In addition, modulation of the maximum phase reached 346°. This work will inspire a new generation of metasurface-based optical devices that combine two active materials.
钙钛矿和石墨烯在有源光子学领域正迅速走红,因为它们在光与物质相互作用的动态操控方面展现出优异的光电特性。然而,挑战依然存在,比如钙钛矿在环境条件下的不稳定性以及实验中石墨烯的费米能级较低。这些缺点限制了它们单独用于先进光学器件时的应用范围。不过,石墨烯与钙钛矿的结合仍是有效控制光与物质相互作用的一条有前景的途径。在此,我们报道了一种双光电超材料器件,它通过将太赫兹超表面与由石墨烯、聚酰亚胺和钙钛矿组成的三明治复合物集成在一起,实现了对高阶法诺共振的超宽带和多维操控。由于光生载流子和静电掺杂效应,该双光电超材料器件在热失衡(系统的静电掺杂状态)下表现出不同的操控行为。传输幅度的调制深度达到200%,总共振频率偏移为800吉赫兹,共振频率的可调范围为68.8%。此外,最大相位调制达到346°。这项工作将激发新一代基于超表面的光学器件,这类器件结合了两种活性材料。