Department of Communications, School of Electrical and Computer Engineering, University of Campinas, Campinas 13083-852, Brazil.
Department of Electronics and Computing, Technology Center, Federal University of Santa Maria, Santa Maria 97105-900, Brazil.
Sensors (Basel). 2021 Dec 8;21(24):8200. doi: 10.3390/s21248200.
Multi-input multi-output (MIMO) transmission schemes have become the techniques of choice for increasing spectral efficiency in bandwidth-congested areas. However, the design of cost-effective receivers for MIMO channels remains a challenging task. The maximum likelihood detector can achieve excellent performance-usually, the best performance-but its computational complexity is a limiting factor in practical implementation. In the present work, a novel MIMO scheme using a practically feasible decoding algorithm based on the phase transmittance radial basis function (PTRBF) neural network is proposed. For some practical scenarios, the proposed scheme achieves improved receiver performance with lower computational complexity relative to the maximum likelihood decoding, thus substantially increasing the applicability of the algorithm. Simulation results are presented for MIMO-OFDM under 5G wireless Rayleigh channels so that a fair performance comparison with other reference techniques can be established.
多输入多输出(MIMO)传输方案已成为在带宽拥挤地区提高频谱效率的首选技术。然而,设计用于 MIMO 信道的具有成本效益的接收器仍然是一项具有挑战性的任务。最大似然检测器可以实现出色的性能-通常是最佳性能-但其计算复杂度是实际实现的一个限制因素。在目前的工作中,提出了一种使用基于相位透射径向基函数(PTRBF)神经网络的实际可行的解码算法的新型 MIMO 方案。对于某些实际情况,与最大似然解码相比,所提出的方案在降低计算复杂度的同时实现了改进的接收器性能,从而大大提高了算法的适用性。针对 5G 无线瑞利信道下的 MIMO-OFDM 给出了仿真结果,以便可以与其他参考技术进行公平的性能比较。