Zhang Lei, Tang Cheng, Sanvito Stefano, Gu Yuantong, Du Aijun
School of Chemistry and Physics, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4000, Australia.
Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4000, Australia.
ACS Appl Mater Interfaces. 2022 Jan 12;14(1):1800-1806. doi: 10.1021/acsami.1c21848. Epub 2021 Dec 28.
Electrically controlled magnetism in two-dimensional (2D) multiferroics is highly desirable for both fundamental research and the future development of low-power nanodevices. Herein, inspired by the recently experimentally realized 2D antiferromagnetic MnPSe [ 2021, 16 (7), 782] and guided by a heteromagnetic structural design, we engineer strong magnetoelectric coupling in a hydrogen-intercalated 2D MnPSe bilayer. Hydrogen functionalization breaks the centrosymmetry of bilayer MnPSe, leading to out-of-plane ferroelectricity. Moreover, there is a phase transition from antiferromagnetic semiconductor to ferromagnetic half-metal in the H-bonded MnPSe layer, while the other remains antiferromagnetic and semiconducting. When reversing the electrical polarization, the intercalated H atom can flip between the top and bottom layers with an ultralow switching barrier, which allows one to tune the magnetic order and conductivity of the individual layers via an external electric field. Our results pave a new avenue to realize strong magnetoelectric coupling in single-phase multiferroic material. The ferroelectricity-controlled magnetic phase transition and half-metallicity offer promising applications in nanoscale spintronics such as electrically written and magnetically read memories.
二维(2D)多铁性材料中的电控磁性对于基础研究和低功耗纳米器件的未来发展都非常重要。在此,受近期实验实现的二维反铁磁体MnPSe [2021, 16 (7), 782] 的启发,并在异质磁性结构设计的指导下,我们在氢插层的二维MnPSe双层中设计了强磁电耦合。氢功能化打破了双层MnPSe的中心对称性,导致面外铁电性。此外,在氢键合的MnPSe层中存在从反铁磁半导体到铁磁半金属的相变,而另一层保持反铁磁和半导体性质。当反转电极化时,插层的H原子可以以超低的开关势垒在顶层和底层之间翻转,这使得人们能够通过外部电场调节各层的磁序和电导率。我们的结果为在单相多铁性材料中实现强磁电耦合开辟了一条新途径。铁电控制的磁相变和半金属性在纳米级自旋电子学中具有广阔的应用前景,如电写磁读存储器。