Suppr超能文献

Towards Better Caption Supervision for Object Detection.

作者信息

Chen Changjian, Wu Jing, Wang Xiaohan, Xiang Shouxing, Zhang Song-Hai, Tang Qifeng, Liu Shixia

出版信息

IEEE Trans Vis Comput Graph. 2022 Apr;28(4):1941-1954. doi: 10.1109/TVCG.2021.3138933. Epub 2022 Feb 25.

Abstract

As training high-performance object detectors requires expensive bounding box annotations, recent methods resort to free-available image captions. However, detectors trained on caption supervision perform poorly because captions are usually noisy and cannot provide precise location information. To tackle this issue, we present a visual analysis method, which tightly integrates caption supervision with object detection to mutually enhance each other. In particular, object labels are first extracted from captions, which are utilized to train the detectors. Then, the objects detected from images are fed into caption supervision for further improvement. To effectively loop users into the object detection process, a node-link-based set visualization supported by a multi-type relational co-clustering algorithm is developed to explain the relationships between the extracted labels and the images with detected objects. The co-clustering algorithm clusters labels and images simultaneously by utilizing both their representations and their relationships. Quantitative evaluations and a case study are conducted to demonstrate the efficiency and effectiveness of the developed method in improving the performance of object detectors.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验