Suppr超能文献

用于未知动态系统实际非线性模型预测控制的回声状态网络

Echo State Networks for Practical Nonlinear Model Predictive Control of Unknown Dynamic Systems.

作者信息

Jordanou Jean Panaioti, Antonelo Eric Aislan, Camponogara Eduardo

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Jun;33(6):2615-2629. doi: 10.1109/TNNLS.2021.3136357. Epub 2022 Jun 1.

Abstract

Nonlinear model predictive control (NMPC) of industrial processes is changeling in part because the model of the plant may not be completely known but also for being computationally demanding. This work proposes an extremely efficient reservoir computing (RC)-based control framework that speeds up the NMPC of processes. In this framework, while an echo state network (ESN) serves as the dynamic RC-based system model of a process, the practical nonlinear model predictive controller (PNMPC) simplifies NMPC by splitting the forced and the free responses of the trained ESN, yielding the so-called ESN-PNMPC architecture. While the free response is generated by the forward simulation of the ESN model, the forced response is obtained by a fast and recursive calculation of the input-output sensitivities from the ESN. The efficiency not only results from the fast training inherited by RC but also from a computationally cheap control action given by the aforementioned novel recursive formulation and the computation in the reduced dimension space of input and output signals. The resulting architecture, equipped with a correction filter, is robust to unforeseen disturbances. The potential of the ESN-PNMPC is shown by application to the control of the four-tank system and an oil production platform, outperforming the predictive approach with a long-short term memory (LSTM) model, two standard linear control algorithms, and approximate predictive control.

摘要

工业过程的非线性模型预测控制(NMPC)颇具挑战性,部分原因在于工厂模型可能并不完全已知,还在于其计算量很大。这项工作提出了一种基于储层计算(RC)的极其高效的控制框架,该框架可加速过程的NMPC。在此框架中,回声状态网络(ESN)用作过程基于动态RC的系统模型,而实际非线性模型预测控制器(PNMPC)通过将训练后的ESN的强迫响应和自由响应分开,简化了NMPC,从而产生了所谓的ESN - PNMPC架构。自由响应由ESN模型的正向模拟生成,而强迫响应则通过从ESN快速递归计算输入 - 输出灵敏度来获得。这种效率不仅源于RC继承的快速训练,还源于上述新颖递归公式给出的计算成本低廉的控制动作以及在输入和输出信号的降维空间中的计算。所得架构配备了校正滤波器,对不可预见的干扰具有鲁棒性。通过将ESN - PNMPC应用于四水箱系统和石油生产平台的控制,展示了其潜力,其性能优于使用长短期记忆(LSTM)模型的预测方法、两种标准线性控制算法和近似预测控制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验