Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States.
School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States.
ACS Chem Biol. 2022 Nov 18;17(11):3059-3068. doi: 10.1021/acschembio.1c00932. Epub 2021 Dec 29.
Site-specific O-glycoproteome mapping in complex biological systems provides a molecular basis for understanding the structure-function relationships of glycoproteins and their roles in physiological and pathological processes. Previous O-glycoproteome analysis in cerebrospinal fluid (CSF) focused on sialylated glycoforms, while missing information on other glycosylation types. In order to achieve an unbiased O-glycosylation profile, we developed an integrated strategy combining universal boronic acid enrichment, high-pH fractionation, and electron-transfer and higher-energy collision dissociation (EThcD) for enhanced intact O-glycopeptide analysis. We applied this strategy to analyze the O-glycoproteome in CSF, resulting in the identification of 308 O-glycopeptides from 110 O-glycoproteins, covering both sialylated and nonsialylated glycoforms. To our knowledge, this is the largest data set of O-glycoproteins and O-glycosites reported for CSF to date. We also developed a peptidomics workflow that utilized the EThcD and a three-step database searching strategy for comprehensive PTM analysis of endogenous peptides, including N-glycosylation, O-glycosylation, and other common peptide PTMs. Interestingly, among the 1411 endogenous peptides identified, 89 were O-glycosylated, and only one N-glycosylated peptide was found, indicating that CSF endogenous peptides were predominantly O-glycosylated. Analyses of the O-glycoproteome and endogenous peptidome PTMs were also conducted in the CSF of MCI and AD patients to provide a landscape of glycosylation patterns in different disease states. Our results showed a decreasing trend in fucosylation and an increasing trend of endogenous peptide O-glycosylation, which may play an important role in AD progression.
在复杂的生物系统中进行特定于位点的 O-糖蛋白组学分析为理解糖蛋白的结构-功能关系及其在生理和病理过程中的作用提供了分子基础。以前对脑脊液 (CSF) 中的 O-糖蛋白组学分析主要集中在唾液酸化的糖型上,而忽略了其他糖基化类型的信息。为了实现无偏的 O-糖基化谱分析,我们开发了一种结合通用硼酸富集、高 pH 分级、电子转移和更高能量碰撞解离 (EThcD) 的集成策略,用于增强完整 O-糖肽分析。我们应用该策略分析 CSF 中的 O-糖蛋白组,鉴定了 110 种 O-糖蛋白中的 308 种 O-糖肽,涵盖了唾液酸化和非唾液酸化的糖型。据我们所知,这是迄今为止 CSF 中报道的最大的 O-糖蛋白和 O-糖基位点数据集。我们还开发了一种肽组学工作流程,利用 EThcD 和三步数据库搜索策略,对包括 N-糖基化、O-糖基化和其他常见肽 PTM 在内的内源性肽进行全面 PTM 分析。有趣的是,在鉴定的 1411 种内源性肽中,有 89 种是 O-糖基化的,只有一种 N-糖基化的肽被发现,这表明 CSF 内源性肽主要是 O-糖基化的。还对 MCI 和 AD 患者的 CSF 中的 O-糖蛋白组和内源性肽 PTM 进行了分析,以提供不同疾病状态下糖基化模式的全景图。我们的结果显示,岩藻糖基化呈下降趋势,内源性肽 O-糖基化呈上升趋势,这可能在 AD 进展中发挥重要作用。