Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, Karnataka 560012, India.
Centre of Excellence for Dental and Orthopedic Applications, Material Research Centre, Indian Institute of Science, Bangalore, Karnataka 560012, India.
ACS Biomater Sci Eng. 2022 Jan 10;8(1):170-184. doi: 10.1021/acsbiomaterials.1c00879. Epub 2021 Dec 29.
For a number of clinical applications, Ti6Al4V implants with bioactive coatings are used. However, the deposition of a functional polymeric coating with desired physical properties, biocompatibility, and long-term stability remains largely unexplored. Among widely investigated synthetic biomaterials, polyvinylidene fluoride (PVDF) with β-polymorph and barium titanate (BaTiO, BT) are considered as good examples of piezo-biopolymers and bioceramics, respectively. In this work, an adherent PVDF-based nanocomposite coating is deposited onto a Ti6Al4V substrate to explore the impact of its functional characteristics (piezoactivity) on cellular behavior and bioactivity (apatite growth and mineralized matrix formation). The precursor solution was prepared by physically grafting PVDF with polydopamine (pDOPA), forming mPVDF. Subsequently, mPVDF was reinforced with BaTiO nanoparticles in dimethylformamide/acetone solution, and the resulting nanocomposite (mPVDF-BT) was then spray-coated onto a roughened Ti6Al4V substrate using an airbrush at 140 °C under a pressure of 2 bar. The reproducibility of this simple yet effective processing approach to deposit chemically stable and adherent coatings was established. Remarkably, the modification with pDOPA and reinforcement with BaTiO nanoparticles resulted in an enhanced β-fraction of PVDF up to 96%. This nanocomposite encouraged cellular viability of preosteoblasts (∼158% at day 5) and characteristic spreading, . Our findings indicate that the mPVDF-BT coating facilitated faster nucleation and growth of the biomineralized apatite layer with ∼70% coverage within 3 days of incubation in the simulated body fluid. In addition, the coupling among surface polar energy (5.5 mN/m), fractional polarity (∼117%), roughness (8.7 μm), and fibrous morphology also endorsed better cellular behavior. Taken together, this coating deposition strategy will pave the pathway toward designing cell-instructive surface-modified Ti6Al4V biomaterials with tailored biomineralization and bioactivity properties for musculoskeletal reconstruction and regeneration applications.
对于许多临床应用,使用具有生物活性涂层的 Ti6Al4V 植入物。然而,具有所需物理性质、生物相容性和长期稳定性的功能聚合物涂层的沉积在很大程度上仍未得到探索。在广泛研究的合成生物材料中,聚偏二氟乙烯(PVDF)具有β-多晶型和钛酸钡(BaTiO,BT)分别被认为是压电生物聚合物和生物陶瓷的良好范例。在这项工作中,将附着性的基于 PVDF 的纳米复合材料涂层沉积到 Ti6Al4V 基底上,以探索其功能特性(压电活性)对细胞行为和生物活性(磷灰石生长和矿化基质形成)的影响。通过物理接枝聚多巴胺(pDOPA)制备前驱体溶液,形成 mPVDF。随后,将 mPVDF 在二甲基甲酰胺/丙酮溶液中用 BaTiO 纳米粒子增强,然后将所得纳米复合材料(mPVDF-BT)在 140°C 下使用喷枪在 2 巴的压力下喷涂到粗糙化的 Ti6Al4V 基底上。这种简单而有效的沉积化学稳定且附着性涂层的处理方法的重现性得到了确立。值得注意的是,用 pDOPA 进行修饰并用 BaTiO 纳米粒子增强可使 PVDF 的β-分数提高到 96%。这种纳米复合材料促进了成骨前体细胞的细胞活力(第 5 天约为 158%)和特征性伸展。我们的研究结果表明,mPVDF-BT 涂层促进了生物矿化磷灰石层更快的成核和生长,在模拟体液中孵育 3 天内覆盖率达到约 70%。此外,表面极性能(5.5 mN/m)、分数极性(约 117%)、粗糙度(8.7 μm)和纤维形态之间的耦合也促进了更好的细胞行为。总之,这种涂层沉积策略将为设计具有定制生物矿化和生物活性特性的用于肌肉骨骼重建和再生应用的具有细胞指令性的表面改性 Ti6Al4V 生物材料铺平道路。