Suppr超能文献

抵御多个不可预见的对抗性视频。

Defending Against Multiple and Unforeseen Adversarial Videos.

作者信息

Lo Shao-Yuan, Patel Vishal M

出版信息

IEEE Trans Image Process. 2022;31:962-973. doi: 10.1109/TIP.2021.3137648. Epub 2022 Jan 6.

Abstract

Adversarial robustness of deep neural networks has been actively investigated. However, most existing defense approaches are limited to a specific type of adversarial perturbations. Specifically, they often fail to offer resistance to multiple attack types simultaneously, i.e., they lack multi-perturbation robustness. Furthermore, compared to image recognition problems, the adversarial robustness of video recognition models is relatively unexplored. While several studies have proposed how to generate adversarial videos, only a handful of approaches about defense strategies have been published in the literature. In this paper, we propose one of the first defense strategies against multiple types of adversarial videos for video recognition. The proposed method, referred to as MultiBN, performs adversarial training on multiple adversarial video types using multiple independent batch normalization (BN) layers with a learning-based BN selection module. With a multiple BN structure, each BN brach is responsible for learning the distribution of a single perturbation type and thus provides more precise distribution estimations. This mechanism benefits dealing with multiple perturbation types. The BN selection module detects the attack type of an input video and sends it to the corresponding BN branch, making MultiBN fully automatic and allowing end-to-end training. Compared to present adversarial training approaches, the proposed MultiBN exhibits stronger multi-perturbation robustness against different and even unforeseen adversarial video types, ranging from Lp-bounded attacks and physically realizable attacks. This holds true on different datasets and target models. Moreover, we conduct an extensive analysis to study the properties of the multiple BN structure.

摘要

深度神经网络的对抗鲁棒性已得到积极研究。然而,大多数现有的防御方法仅限于特定类型的对抗扰动。具体而言,它们往往无法同时抵御多种攻击类型,即缺乏多扰动鲁棒性。此外,与图像识别问题相比,视频识别模型的对抗鲁棒性相对较少被探索。虽然有几项研究提出了如何生成对抗视频,但文献中仅发表了少数关于防御策略的方法。在本文中,我们提出了针对视频识别中多种类型对抗视频的首批防御策略之一。所提出的方法称为MultiBN,它使用具有基于学习的BN选择模块的多个独立批归一化(BN)层对多种对抗视频类型进行对抗训练。通过多BN结构,每个BN分支负责学习单一扰动类型的分布,从而提供更精确的分布估计。这种机制有利于处理多种扰动类型。BN选择模块检测输入视频的攻击类型并将其发送到相应的BN分支,使MultiBN完全自动化并允许端到端训练。与现有的对抗训练方法相比,所提出的MultiBN对不同甚至不可预见的对抗视频类型表现出更强的多扰动鲁棒性,包括Lp有界攻击和物理可实现攻击。在不同的数据集和目标模型上都是如此。此外,我们进行了广泛的分析以研究多BN结构的特性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验