School of Humanities, Shangluo University, Shangluo 726000, Shaanxi, China.
Comput Intell Neurosci. 2021 Dec 20;2021:5307646. doi: 10.1155/2021/5307646. eCollection 2021.
The traditional BP neural network has the disadvantages of easy falling into local minimum and slow convergence speed. Aiming at the shortcomings of BP neural network (BP neural network), an artificial bee colony algorithm (ABC) is proposed to cross-optimize the weight and threshold of BP network parameters. This study is mainly about the application of BP neural network algorithm in English curriculum recommendation technology. It includes the application of BP neural network algorithm in English course recommendation technology, English course teaching design mode, the application of BP neural network algorithm in English course, and the optimal combination of bee colony algorithm and BP neural network. After 4690 iterations, the neural network reaches the target accuracy, and the training is completed. At the same time, the prediction error of the model is less than 10%, which further shows that the performance of the prediction model is good. Therefore, the combination model is recommended in this paper. The results show that the optimization algorithm improves the solution accuracy and speeds up the convergence speed of the network.
传统的 BP 神经网络存在易陷入局部极小值和收敛速度慢的缺点。针对 BP 神经网络(BP 神经网络)的缺点,提出了一种人工蜂群算法(ABC)来交叉优化 BP 网络参数的权重和阈值。本研究主要探讨了 BP 神经网络算法在英语课程推荐技术中的应用。它包括 BP 神经网络算法在英语课程推荐技术中的应用、英语课程教学设计模式、BP 神经网络算法在英语课程中的应用、以及蜂群算法与 BP 神经网络的最优组合。经过 4690 次迭代,神经网络达到目标精度,训练完成。同时,模型的预测误差小于 10%,这进一步表明了预测模型的性能良好。因此,本文推荐使用组合模型。结果表明,优化算法提高了求解精度,加快了网络的收敛速度。