Suppr超能文献

椎体增强术后急性相邻椎体骨折的临床预测模型的开发和内部验证:AVA 评分。

Development and internal validation of a clinical prediction model for acute adjacent vertebral fracture after vertebral augmentation : the AVA score.

机构信息

Department of Healthcare Epidemiology, School of Public Health in the Graduate School of Medicine, Kyoto University, Kyoto, Japan.

Spine and Low Back Pain Center, Kitasuma Hospital, Hyogo, Japan.

出版信息

Bone Joint J. 2022 Jan;104-B(1):97-102. doi: 10.1302/0301-620X.104B1.BJJ-2021-0151.R3.

Abstract

AIMS

To develop and internally validate a preoperative clinical prediction model for acute adjacent vertebral fracture (AVF) after vertebral augmentation to support preoperative decision-making, named the after vertebral augmentation (AVA) score.

METHODS

In this prognostic study, a multicentre, retrospective single-level vertebral augmentation cohort of 377 patients from six Japanese hospitals was used to derive an AVF prediction model. Backward stepwise selection (p < 0.05) was used to select preoperative clinical and imaging predictors for acute AVF after vertebral augmentation for up to one month, from 14 predictors. We assigned a score to each selected variable based on the regression coefficient and developed the AVA scoring system. We evaluated sensitivity and specificity for each cut-off, area under the curve (AUC), and calibration as diagnostic performance. Internal validation was conducted using bootstrapping to correct the optimism.

RESULTS

Of the 377 patients used for model derivation, 58 (15%) had an acute AVF postoperatively. The following preoperative measures on multivariable analysis were summarized in the five-point AVA score: intravertebral instability (≥ 5 mm), focal kyphosis (≥ 10°), duration of symptoms (≥ 30 days), intravertebral cleft, and previous history of vertebral fracture. Internal validation showed a mean optimism of 0.019 with a corrected AUC of 0.77. A cut-off of ≤ one point was chosen to classify a low risk of AVF, for which only four of 137 patients (3%) had AVF with 92.5% sensitivity and 45.6% specificity. A cut-off of ≥ four points was chosen to classify a high risk of AVF, for which 22 of 38 (58%) had AVF with 41.5% sensitivity and 94.5% specificity.

CONCLUSION

In this study, the AVA score was found to be a simple preoperative method for the identification of patients at low and high risk of postoperative acute AVF. This model could be applied to individual patients and could aid in the decision-making before vertebral augmentation. Cite this article:  2022;104-B(1):97-102.

摘要

目的

开发并内部验证一种用于椎体增强术后急性相邻椎体骨折(AVF)的术前临床预测模型,以支持术前决策,命名为椎体增强后(AVA)评分。

方法

在这项预后研究中,使用来自日本六家医院的多中心、回顾性单节段椎体增强队列的 377 名患者来推导 AVF 预测模型。采用向后逐步选择(p<0.05)方法,从 14 个预测因子中选择椎体增强后 1 个月内急性 AVF 的术前临床和影像学预测因子。我们根据回归系数为每个选定变量分配一个分数,并开发了 AVA 评分系统。我们评估了每个截止值的敏感性和特异性、曲线下面积(AUC)和校准作为诊断性能。使用自举法进行内部验证以纠正乐观性。

结果

在用于模型推导的 377 名患者中,58 名(15%)术后出现急性 AVF。多变量分析总结了以下五项 AVA 评分的术前措施:椎体内不稳定(≥5mm)、局灶性后凸(≥10°)、症状持续时间(≥30 天)、椎体内裂隙和既往椎体骨折史。内部验证显示平均乐观值为 0.019,校正后的 AUC 为 0.77。选择≤1 分为低风险 AVF 分类,其中 137 名患者中的 4 名(3%)出现 AVF,敏感性为 92.5%,特异性为 45.6%。选择≥4 分为高风险 AVF 分类,其中 38 名患者中的 22 名(58%)出现 AVF,敏感性为 41.5%,特异性为 94.5%。

结论

在这项研究中,AVA 评分被发现是一种简单的术前方法,可用于识别术后急性 AVF 低风险和高风险的患者。该模型可应用于个体患者,并可在椎体增强前辅助决策。引用本文:2022;104-B(1):97-102。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验