Allichon Marie-Charlotte, Ortiz Vanesa, Pousinha Paula, Andrianarivelo Andry, Petitbon Anna, Heck Nicolas, Trifilieff Pierre, Barik Jacques, Vanhoutte Peter
CNRS, UMR 8246, Neuroscience Paris Seine, Paris, France.
INSERM, UMR-S 1130, Neuroscience Paris Seine, Institute of Biology Paris Seine, Paris, France.
Front Synaptic Neurosci. 2021 Dec 14;13:799274. doi: 10.3389/fnsyn.2021.799274. eCollection 2021.
Drug addiction is defined as a compulsive pattern of drug-seeking- and taking- behavior, with recurrent episodes of abstinence and relapse, and a loss of control despite negative consequences. Addictive drugs promote reinforcement by increasing dopamine in the mesocorticolimbic system, which alters excitatory glutamate transmission within the reward circuitry, thereby hijacking reward processing. Within the reward circuitry, the striatum is a key target structure of drugs of abuse since it is at the crossroad of converging glutamate inputs from limbic, thalamic and cortical regions, encoding components of drug-associated stimuli and environment, and dopamine that mediates reward prediction error and incentive values. These signals are integrated by medium-sized spiny neurons (MSN), which receive glutamate and dopamine axons converging onto their dendritic spines. MSN primarily form two mostly distinct populations based on the expression of either DA-D1 (D1R) or DA-D2 (D2R) receptors. While a classical view is that the two MSN populations act in parallel, playing antagonistic functional roles, the picture seems much more complex. Herein, we review recent studies, based on the use of cell-type-specific manipulations, demonstrating that dopamine differentially modulates dendritic spine density and synapse formation, as well as glutamate transmission, at specific inputs projecting onto D1R-MSN and D2R-MSN to shape persistent pathological behavioral in response to drugs of abuse. We also discuss the identification of distinct molecular events underlying the detrimental interplay between dopamine and glutamate signaling in D1R-MSN and D2R-MSN and highlight the relevance of such cell-type-specific molecular studies for the development of innovative strategies with potential therapeutic value for addiction. Because drug addiction is highly prevalent in patients with other psychiatric disorders when compared to the general population, we last discuss the hypothesis that shared cellular and molecular adaptations within common circuits could explain the co-occurrence of addiction and depression. We will therefore conclude this review by examining how the nucleus accumbens (NAc) could constitute a key interface between addiction and depression.
药物成瘾被定义为一种强迫性的觅药和用药行为模式,伴有反复出现的戒断和复发情况,且尽管存在负面后果仍失去控制能力。成瘾性药物通过增加中脑皮质边缘系统中的多巴胺来促进强化作用,这会改变奖赏回路内的兴奋性谷氨酸传递,从而操控奖赏处理过程。在奖赏回路中,纹状体是滥用药物的关键目标结构,因为它处于来自边缘系统、丘脑和皮质区域的汇聚性谷氨酸输入的交叉点,对与药物相关的刺激和环境成分进行编码,同时多巴胺介导奖赏预测误差和激励值。这些信号由中型多棘神经元(MSN)整合,MSN接收汇聚到其树突棘上的谷氨酸和多巴胺轴突。MSN主要根据多巴胺D1(D1R)或多巴胺D2(D2R)受体的表达形成两个大致不同的群体。虽然传统观点认为这两个MSN群体并行发挥作用,具有拮抗性功能,但实际情况似乎更为复杂。在此,我们回顾基于细胞类型特异性操作的近期研究,这些研究表明多巴胺以不同方式调节投射到D1R-MSN和D2R-MSN的特定输入处的树突棘密度和突触形成,以及谷氨酸传递,以塑造对滥用药物的持续性病理行为。我们还讨论了在D1R-MSN和D2R-MSN中多巴胺与谷氨酸信号有害相互作用背后不同分子事件的识别,并强调此类细胞类型特异性分子研究对于开发具有潜在成瘾治疗价值的创新策略的相关性。由于与普通人群相比,药物成瘾在患有其他精神疾病的患者中极为普遍,我们最后讨论一个假说,即共同回路内共享的细胞和分子适应性可以解释成瘾和抑郁的共现。因此,我们将通过研究伏隔核(NAc)如何构成成瘾与抑郁之间的关键界面来结束本综述。