Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia.
Institute for Molecular Bioscience, IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia.
Cell Mol Life Sci. 2021 Dec 31;79(1):38. doi: 10.1007/s00018-021-04041-z.
Bacteria that occupy an intracellular niche can evade extracellular host immune responses and antimicrobial molecules. In addition to classic intracellular pathogens, other bacteria including uropathogenic Escherichia coli (UPEC) can adopt both extracellular and intracellular lifestyles. UPEC intracellular survival and replication complicates treatment, as many therapeutic molecules do not effectively reach all components of the infection cycle. In this study, we explored cell-penetrating antimicrobial peptides from distinct structural classes as alternative molecules for targeting bacteria. We identified two β-hairpin peptides from the horseshoe crab, tachyplesin I and polyphemusin I, with broad antimicrobial activity toward a panel of pathogenic and non-pathogenic bacteria in planktonic form. Peptide analogs [I11A]tachyplesin I and [I11S]tachyplesin I maintained activity toward bacteria, but were less toxic to mammalian cells than native tachyplesin I. This important increase in therapeutic window allowed treatment with higher concentrations of [I11A]tachyplesin I and [I11S]tachyplesin I, to significantly reduce intramacrophage survival of UPEC in an in vitro infection model. Mechanistic studies using bacterial cells, model membranes and cell membrane extracts, suggest that tachyplesin I and polyphemusin I peptides kill UPEC by selectively binding and disrupting bacterial cell membranes. Moreover, treatment of UPEC with sublethal peptide concentrations increased zinc toxicity and enhanced innate macrophage antimicrobial pathways. In summary, our combined data show that cell-penetrating peptides are attractive alternatives to traditional small molecule antibiotics for treating UPEC infection, and that optimization of native peptide sequences can deliver effective antimicrobials for targeting bacteria in extracellular and intracellular environments.
占据细胞内生态位的细菌可以逃避细胞外宿主免疫反应和抗菌分子。除了经典的细胞内病原体外,其他细菌,包括尿路致病性大肠杆菌(UPEC),也可以采用细胞外和细胞内生活方式。UPEC 的细胞内存活和复制使治疗变得复杂,因为许多治疗性分子不能有效地到达感染周期的所有组成部分。在这项研究中,我们探索了来自不同结构类别的穿透细胞膜的抗菌肽,作为针对细菌的替代分子。我们从鲎中鉴定了两种β发夹肽,即 tachyplesin I 和 polyphemusin I,它们对浮游形式的一组致病性和非致病性细菌具有广泛的抗菌活性。肽类似物 [I11A]tachyplesin I 和 [I11S]tachyplesin I 保持对细菌的活性,但对哺乳动物细胞的毒性低于天然 tachyplesin I。这种治疗窗口的重要增加允许使用更高浓度的 [I11A]tachyplesin I 和 [I11S]tachyplesin I 进行治疗,从而显著降低体外感染模型中 UPEC 在内噬细胞中的存活。使用细菌细胞、模型膜和细胞膜提取物进行的机制研究表明,tachyplesin I 和 polyphemusin I 肽通过选择性结合和破坏细菌细胞膜来杀死 UPEC。此外,用亚致死浓度的肽处理 UPEC 会增加锌毒性并增强先天巨噬细胞抗菌途径。总之,我们的综合数据表明,穿透细胞膜的肽是治疗 UPEC 感染的传统小分子抗生素的有吸引力的替代品,并且优化天然肽序列可以提供针对细胞外和细胞内环境中细菌的有效抗菌剂。