Zhao Xi-Le, Yang Jing-Hua, Ma Tian-Hui, Jiang Tai-Xiang, Ng Michael K, Huang Ting-Zhu
IEEE Trans Image Process. 2022;31:984-999. doi: 10.1109/TIP.2021.3138325. Epub 2022 Jan 10.
Completing missing entries in multidimensional visual data is a typical ill-posed problem that requires appropriate exploitation of prior information of the underlying data. Commonly used priors can be roughly categorized into three classes: global tensor low-rankness, local properties, and nonlocal self-similarity (NSS); most existing works utilize one or two of them to implement completion. Naturally, there arises an interesting question: can one concurrently make use of multiple priors in a unified way, such that they can collaborate with each other to achieve better performance? This work gives a positive answer by formulating a novel tensor completion framework which can simultaneously take advantage of the global-local-nonlocal priors. In the proposed framework, the tensor train (TT) rank is adopted to characterize the global correlation; meanwhile, two Plug-and-Play (PnP) denoisers, including a convolutional neural network (CNN) denoiser and the color block-matching and 3 D filtering (CBM3D) denoiser, are incorporated to preserve local details and exploit NSS, respectively. Then, we design a proximal alternating minimization algorithm to efficiently solve this model under the PnP framework. Under mild conditions, we establish the convergence guarantee of the proposed algorithm. Extensive experiments show that these priors organically benefit from each other to achieve state-of-the-art performance both quantitatively and qualitatively.
在多维视觉数据中填充缺失条目是一个典型的不适定问题,需要对基础数据的先验信息进行适当利用。常用的先验大致可分为三类:全局张量低秩性、局部属性和非局部自相似性(NSS);大多数现有工作利用其中一两种来实现填充。自然而然地,就出现了一个有趣的问题:能否以统一的方式同时利用多种先验,使它们能够相互协作以实现更好的性能?这项工作通过构建一个新颖的张量填充框架给出了肯定的答案,该框架可以同时利用全局 - 局部 - 非局部先验。在所提出的框架中,采用张量列车(TT)秩来表征全局相关性;同时,引入了两种即插即用(PnP)去噪器,包括卷积神经网络(CNN)去噪器和彩色块匹配与三维滤波(CBM3D)去噪器,分别用于保留局部细节和利用NSS。然后,我们设计了一种近端交替最小化算法,以在PnP框架下有效地求解该模型。在温和条件下,我们建立了所提算法的收敛性保证。大量实验表明,这些先验相互有机地受益,从而在定量和定性方面都实现了最优性能。