Zha Zhiyuan, Wen Bihan, Yuan Xin, Zhang Jiachao, Zhou Jiantao, Jiang Xudong, Zhu Ce
IEEE Trans Cybern. 2024 May;54(5):3338-3351. doi: 10.1109/TCYB.2023.3251730. Epub 2024 Apr 16.
Compressive sensing (CS) techniques using a few compressed measurements have drawn considerable interest in reconstructing multispectral imagery (MSI). Nonlocal-based tensor methods have been widely used for MSI-CS reconstruction, which employ the nonlocal self-similarity (NSS) property of MSI to obtain satisfactory results. However, such methods only consider the internal priors of MSI while ignoring important external image information, for example deep-driven priors learned from a corpus of natural image datasets. Meanwhile, they usually suffer from annoying ringing artifacts due to the aggregation of overlapping patches. In this article, we propose a novel approach for highly effective MSI-CS reconstruction using multiple complementary priors (MCPs). The proposed MCP jointly exploits nonlocal low-rank and deep image priors under a hybrid plug-and-play framework, which contains multiple pairs of complementary priors, namely, internal and external, shallow and deep, and NSS and local spatial priors. To make the optimization tractable, a well-known alternating direction method of multiplier (ADMM) algorithm based on the alternating minimization framework is developed to solve the proposed MCP-based MSI-CS reconstruction problem. Extensive experimental results demonstrate that the proposed MCP algorithm outperforms many state-of-the-art CS techniques in MSI reconstruction. The source code of the proposed MCP-based MSI-CS reconstruction algorithm is available at: https://github.com/zhazhiyuan/MCP_MSI_CS_Demo.git.
利用少量压缩测量的压缩感知(CS)技术在重建多光谱图像(MSI)方面引起了广泛关注。基于非局部的张量方法已被广泛用于MSI-CS重建,该方法利用MSI的非局部自相似性(NSS)特性来获得满意的结果。然而,此类方法仅考虑了MSI的内部先验信息,而忽略了重要的外部图像信息,例如从自然图像数据集语料库中学习到的深度驱动先验信息。同时,由于重叠块的聚合,它们通常会出现恼人的振铃伪影。在本文中,我们提出了一种使用多个互补先验(MCP)进行高效MSI-CS重建的新方法。所提出的MCP在混合即插即用框架下联合利用非局部低秩和深度图像先验,该框架包含多对互补先验,即内部和外部、浅层和深层以及NSS和局部空间先验。为了使优化易于处理,基于交替最小化框架开发了一种著名的乘子交替方向法(ADMM)算法来解决所提出的基于MCP的MSI-CS重建问题。大量实验结果表明,所提出的MCP算法在MSI重建方面优于许多现有先进的CS技术。所提出的基于MCP的MSI-CS重建算法的源代码可在以下网址获取:https://github.com/zhazhiyuan/MCP_MSI_CS_Demo.git。