Suppr超能文献

用于多光谱图像压缩感知重建的多个互补先验

Multiple Complementary Priors for Multispectral Image Compressive Sensing Reconstruction.

作者信息

Zha Zhiyuan, Wen Bihan, Yuan Xin, Zhang Jiachao, Zhou Jiantao, Jiang Xudong, Zhu Ce

出版信息

IEEE Trans Cybern. 2024 May;54(5):3338-3351. doi: 10.1109/TCYB.2023.3251730. Epub 2024 Apr 16.

Abstract

Compressive sensing (CS) techniques using a few compressed measurements have drawn considerable interest in reconstructing multispectral imagery (MSI). Nonlocal-based tensor methods have been widely used for MSI-CS reconstruction, which employ the nonlocal self-similarity (NSS) property of MSI to obtain satisfactory results. However, such methods only consider the internal priors of MSI while ignoring important external image information, for example deep-driven priors learned from a corpus of natural image datasets. Meanwhile, they usually suffer from annoying ringing artifacts due to the aggregation of overlapping patches. In this article, we propose a novel approach for highly effective MSI-CS reconstruction using multiple complementary priors (MCPs). The proposed MCP jointly exploits nonlocal low-rank and deep image priors under a hybrid plug-and-play framework, which contains multiple pairs of complementary priors, namely, internal and external, shallow and deep, and NSS and local spatial priors. To make the optimization tractable, a well-known alternating direction method of multiplier (ADMM) algorithm based on the alternating minimization framework is developed to solve the proposed MCP-based MSI-CS reconstruction problem. Extensive experimental results demonstrate that the proposed MCP algorithm outperforms many state-of-the-art CS techniques in MSI reconstruction. The source code of the proposed MCP-based MSI-CS reconstruction algorithm is available at: https://github.com/zhazhiyuan/MCP_MSI_CS_Demo.git.

摘要

利用少量压缩测量的压缩感知(CS)技术在重建多光谱图像(MSI)方面引起了广泛关注。基于非局部的张量方法已被广泛用于MSI-CS重建,该方法利用MSI的非局部自相似性(NSS)特性来获得满意的结果。然而,此类方法仅考虑了MSI的内部先验信息,而忽略了重要的外部图像信息,例如从自然图像数据集语料库中学习到的深度驱动先验信息。同时,由于重叠块的聚合,它们通常会出现恼人的振铃伪影。在本文中,我们提出了一种使用多个互补先验(MCP)进行高效MSI-CS重建的新方法。所提出的MCP在混合即插即用框架下联合利用非局部低秩和深度图像先验,该框架包含多对互补先验,即内部和外部、浅层和深层以及NSS和局部空间先验。为了使优化易于处理,基于交替最小化框架开发了一种著名的乘子交替方向法(ADMM)算法来解决所提出的基于MCP的MSI-CS重建问题。大量实验结果表明,所提出的MCP算法在MSI重建方面优于许多现有先进的CS技术。所提出的基于MCP的MSI-CS重建算法的源代码可在以下网址获取:https://github.com/zhazhiyuan/MCP_MSI_CS_Demo.git。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验