College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, PR China.
J Colloid Interface Sci. 2022 Apr;611:523-532. doi: 10.1016/j.jcis.2021.12.111. Epub 2021 Dec 21.
Two-dimensional (2D) nanomaterials with nanopore display an enhancement effect on electrocatalysis behavior, whereas the nanopore engineering for 2D nanocatalysts remains an insurmountable challenge. We advance the synthesis of multilayer Pd nanoplates (Pd NPs) and two types of meshy nanoplates (Pd LMNPs/MNPs) with escalating nanopores from none and sparse to porous. Specially, an in situ nanopore enrichment on these Pd nanoplates hinges on a joint etching strategy with integrated manipulation of reaction kinetics. The optimized Pd MNPs exhibit exceptional oxygen reduction reaction performance, owing to the enhanced intermediates protonation on Pd site neighboring nanopore, which has been elucidated by density functional theory calculations. In addition, Pd MNPs also deliver excellent performances in fuel cell anodic reactions, including ethanol oxidation reaction and formic acid oxidation reaction. This study highlights a new strategy for in situ nanopores engineering, providing a prospect for designing superior nanocatalysts.
二维(2D)纳米材料具有纳米孔,对电催化行为表现出增强效应,然而,2D 纳米催化剂的纳米孔工程仍然是一个难以逾越的挑战。我们推进了多层 Pd 纳米板(Pd NPs)和两种类型的网格纳米板(Pd LMNPs/MNPs)的合成,这些纳米板的纳米孔从无到有、从稀疏到多孔逐渐增加。特别地,这些 Pd 纳米板上的原位纳米孔富集取决于一种联合蚀刻策略,该策略通过集成反应动力学控制来实现。优化后的 Pd MNPs 表现出卓越的氧还原反应性能,这归因于 Pd 位邻近纳米孔处增强的中间体质子化,这已通过密度泛函理论计算得到了阐明。此外,Pd MNPs 在燃料电池阳极反应中也表现出优异的性能,包括乙醇氧化反应和甲酸氧化反应。本研究强调了一种新的原位纳米孔工程策略,为设计优异的纳米催化剂提供了前景。