State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, PR China.
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China.
J Colloid Interface Sci. 2022 Apr;611:578-587. doi: 10.1016/j.jcis.2021.12.104. Epub 2021 Dec 21.
A facile one-step sonochemical activation method is utilized to fabricate biomass-derived 3D porous hard carbon (PHC-1) with tuned-surface and is compared with the conventional two-step activation method. As raw biomass offers good KOH impregnation, ultrasonication power diffuses both K and OH ions deep into its interior, creating various nanopores and attaching copious functional groups. In contrast, conventional activation lacks these features under the same carbonization/activation parameters. The high porosity (1599 m/g), rich functional groups (O = 8.10%, N = 0.95%), and well-connected nanoporous network resulting from sonochemical activation, remarkably increased specific capacity, surface wettability, and electrode stability, consequently improved electrochemical performance. Benefiting from its suitable microstructure, PHC-1 possesses superior specific capacity (330 mAh/g at 20 mA/g), good capacity retention (89.5%), and excellent structural stability over 500 sodiation/desodiation cycles at high current density (1000 mA/g). Apart from modus operandi comparison, the two activation methods also provide mechanistic insights as the low-voltage plateau region and graphitic layers decrease simultaneously. This work suggests a scalable and economical approach for synthesizing large-scale activated porous carbons that are used in various applications, be it energy storage, water purification, or gas storage, to name a few.
一种简便的超声化学活化法被用于制备生物质衍生的具有可调表面的 3D 多孔硬碳(PHC-1),并与传统的两步活化法进行了比较。由于原始生物质提供了良好的 KOH 浸渍效果,超声能量将 K 和 OH 离子扩散到其内部深处,从而形成了各种纳米孔并附着了大量的官能团。相比之下,在相同的碳化/活化参数下,传统的活化方法缺乏这些特征。超声化学活化产生的高孔隙率(1599 m/g)、丰富的官能团(O = 8.10%,N = 0.95%)和良好连通的纳米多孔网络,显著提高了比容量、表面润湿性和电极稳定性,从而改善了电化学性能。得益于其合适的微观结构,PHC-1 具有优异的比容量(在 20 mA/g 时为 330 mAh/g)、良好的容量保持率(89.5%)和在高电流密度(1000 mA/g)下经过 500 次钠/脱钠循环后的出色结构稳定性。除了操作方式的比较外,这两种活化方法还提供了机制上的见解,因为低电压平台区域和石墨层同时减少。这项工作为合成用于各种应用(例如储能、水净化或气体存储等)的大规模活化多孔碳提供了一种可扩展且经济的方法。