Suppr超能文献

用于钠离子电池的高比容量硬碳负极的木质纤维素解构工程

Deconstruction Engineering of Lignocellulose Toward High-Plateau-Capacity Hard Carbon Anodes for Sodium-Ion Batteries.

作者信息

Huang Zongyi, Huang Jiahong, Zhong Lei, Zhang Wenli, Qiu Xueqing

机构信息

School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, China.

Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China.

出版信息

Small. 2024 Dec;20(50):e2405632. doi: 10.1002/smll.202405632. Epub 2024 Sep 27.

Abstract

Biomass-derived hard carbon is a promising anode material for commercial sodium-ion batteries due to its low cost, high capacity, and stable cycling performance. However, the intrinsic tight lignocellulosic structure in biomass hinders the formation of sufficient closed pores, limiting the specific capacity of obtained hard carbons. In this contribution, a mild, industrially mature pretreatment method is utilized to selectively regulate biomass components. The hard carbon with a rich closed pore structure is prepared by optimizing the appropriate ratio of biomass composition. Optimized etching conditions enhanced the closed pore volume of hard carbon from 0.15 to 0.26 cm g. Consequently, the engineered hard carbon exhibited excellent electrochemical performance, including a high reversible capacity of 346 mAh g with a high plateau capacity of 254 mAh g⁻¹ at 50 mA g⁻¹, robust rate capability, and cycling stability. The optimized hard carbon shows an 88 mAh g⁻¹ increase in plateau capacity compared to hard carbon from directly carbonizing bamboo fibers. This mature approach provides an easy-to-operate industrial pathway for designing high-capacity biomass-based hard carbons for sodium-ion batteries.

摘要

生物质衍生的硬碳由于其低成本、高容量和稳定的循环性能,是一种很有前景的商用钠离子电池负极材料。然而,生物质中固有的紧密木质纤维素结构阻碍了足够的封闭孔隙的形成,限制了所得硬碳的比容量。在本研究中,采用一种温和的、工业上成熟的预处理方法来选择性地调节生物质成分。通过优化生物质成分的适当比例,制备出具有丰富封闭孔隙结构的硬碳。优化后的刻蚀条件使硬碳的封闭孔隙体积从0.15 cm³ g⁻¹提高到0.26 cm³ g⁻¹。因此,这种经过设计的硬碳表现出优异的电化学性能,包括在50 mA g⁻¹时具有346 mAh g⁻¹的高可逆容量和254 mAh g⁻¹的高平台容量、强大的倍率性能和循环稳定性。与直接碳化竹纤维得到的硬碳相比,优化后的硬碳平台容量增加了88 mAh g⁻¹。这种成熟的方法为设计用于钠离子电池的高容量生物质基硬碳提供了一条易于操作的工业途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验