Suppr超能文献

从纯音阈值预测言语辨别得分——基于机器学习的方法,使用了来自 12697 名受试者的数据。

Predicting speech discrimination scores from pure-tone thresholds-A machine learning-based approach using data from 12,697 subjects.

机构信息

Ajou University Hospital, Suwon, South Korea.

Department of Otolaryngology, School of Medicine, Ajou University, Suwon, South Korea.

出版信息

PLoS One. 2021 Dec 31;16(12):e0261433. doi: 10.1371/journal.pone.0261433. eCollection 2021.

Abstract

Diagnostic tests for hearing impairment not only determines the presence (or absence) of hearing loss, but also evaluates its degree and type, and provides physicians with essential data for future treatment and rehabilitation. Therefore, accurately measuring hearing loss conditions is very important for proper patient understanding and treatment. In current-day practice, to quantify the level of hearing loss, physicians exploit specialized test scores such as the pure-tone audiometry (PTA) thresholds and speech discrimination scores (SDS) as quantitative metrics in examining a patient's auditory function. However, given that these metrics can be easily affected by various human factors, which includes intentional (or accidental) patient intervention, there are needs to cross validate the accuracy of each metric. By understanding a "normal" relationship between the SDS and PTA, physicians can reveal the need for re-testing, additional testing in different dimensions, and also potential malingering cases. For this purpose, in this work, we propose a prediction model for estimating the SDS of a patient by using PTA thresholds via a Random Forest-based machine learning approach to overcome the limitations of the conventional statistical (or even manual) methods. For designing and evaluating the Random Forest-based prediction model, we collected a large-scale dataset from 12,697 subjects, and report a SDS level prediction accuracy of 95.05% and 96.64% for the left and right ears, respectively. We also present comparisons with other widely-used machine learning algorithms (e.g., Support Vector Machine, Multi-layer Perceptron) to show the effectiveness of our proposed Random Forest-based approach. Results obtained from this study provides implications and potential feasibility in providing a practically-applicable screening tool for identifying patient-intended malingering in hearing loss-related tests.

摘要

听力障碍诊断测试不仅可以确定听力损失的存在(或不存在),还可以评估其程度和类型,并为医生提供未来治疗和康复的重要数据。因此,准确测量听力损失情况对于正确理解和治疗患者非常重要。在当前的实践中,医生利用专门的测试分数,如纯音听阈(PTA)阈值和言语辨别分数(SDS)作为定量指标来量化听力损失的程度,以检查患者的听觉功能。然而,由于这些指标很容易受到各种人为因素的影响,包括患者的有意(或无意)干预,因此需要交叉验证每个指标的准确性。通过了解 SDS 和 PTA 之间的“正常”关系,医生可以发现需要重新测试、在不同维度进行额外测试以及潜在的装病情况。为此,在这项工作中,我们提出了一种通过基于随机森林的机器学习方法使用 PTA 阈值来估计患者 SDS 的预测模型,以克服传统统计(甚至手动)方法的局限性。为了设计和评估基于随机森林的预测模型,我们从 12697 名受试者中收集了一个大规模数据集,并报告了左右耳的 SDS 水平预测准确率分别为 95.05%和 96.64%。我们还与其他广泛使用的机器学习算法(例如支持向量机、多层感知机)进行了比较,以展示我们提出的基于随机森林的方法的有效性。这项研究的结果提供了在听力损失相关测试中识别患者故意装病的实用筛查工具的意义和潜在可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/487f/8719684/da554bf789dc/pone.0261433.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验