Suppr超能文献

研究用于 COVID-19 肺部超声图像自动分割和评分的训练-测试数据分割策略。

Investigating training-test data splitting strategies for automated segmentation and scoring of COVID-19 lung ultrasound images.

机构信息

Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27606, USA.

Georgia Institute of Technology, Atlanta, Georgia 30332, USA.

出版信息

J Acoust Soc Am. 2021 Dec;150(6):4118. doi: 10.1121/10.0007272.

Abstract

Ultrasound in point-of-care lung assessment is becoming increasingly relevant. This is further reinforced in the context of the COVID-19 pandemic, where rapid decisions on the lung state must be made for staging and monitoring purposes. The lung structural changes due to severe COVID-19 modify the way ultrasound propagates in the parenchyma. This is reflected by changes in the appearance of the lung ultrasound images. In abnormal lungs, vertical artifacts known as B-lines appear and can evolve into white lung patterns in the more severe cases. Currently, these artifacts are assessed by trained physicians, and the diagnosis is qualitative and operator dependent. In this article, an automatic segmentation method using a convolutional neural network is proposed to automatically stage the progression of the disease. 1863 B-mode images from 203 videos obtained from 14 asymptomatic individual,14 confirmed COVID-19 cases, and 4 suspected COVID-19 cases were used. Signs of lung damage, such as the presence and extent of B-lines and white lung areas, are manually segmented and scored from zero to three (most severe). These manually scored images are considered as ground truth. Different test-training strategies are evaluated in this study. The results shed light on the efficient approaches and common challenges associated with automatic segmentation methods.

摘要

床边肺部超声评估变得越来越重要。在 COVID-19 大流行的背景下,这一点尤为重要,因为必须为分期和监测目的快速做出关于肺部状态的决策。严重 COVID-19 引起的肺部结构变化改变了超声在肺实质中的传播方式。这反映在肺部超声图像的外观变化上。在异常肺部中,出现了称为 B 线的垂直伪影,在更严重的情况下可能会发展为白肺模式。目前,这些伪影由经过训练的医生进行评估,诊断是定性的且依赖于操作者。在本文中,提出了一种使用卷积神经网络的自动分割方法,用于自动分期疾病的进展。使用了来自 14 名无症状个体、14 名确诊 COVID-19 病例和 4 名疑似 COVID-19 病例的 203 个视频中的 1863 个 B 模式图像。从 0 到 3(最严重)手动分割和评分肺部损伤的迹象,例如 B 线和白肺区域的存在和程度。这些手动评分的图像被视为真实情况。本研究评估了不同的测试-训练策略。研究结果揭示了与自动分割方法相关的有效方法和常见挑战。

相似文献

2
CoLe-CNN+: Context learning - Convolutional neural network for COVID-19-Ground-Glass-Opacities detection and segmentation.
Comput Biol Med. 2021 Sep;136:104689. doi: 10.1016/j.compbiomed.2021.104689. Epub 2021 Jul 31.
3
Thoracic imaging tests for the diagnosis of COVID-19.
Cochrane Database Syst Rev. 2020 Sep 30;9:CD013639. doi: 10.1002/14651858.CD013639.pub2.
5
DUDA-Net: a double U-shaped dilated attention network for automatic infection area segmentation in COVID-19 lung CT images.
Int J Comput Assist Radiol Surg. 2021 Sep;16(9):1425-1434. doi: 10.1007/s11548-021-02418-w. Epub 2021 Jun 5.
7
Unsupervised segmentation and quantification of COVID-19 lesions on computed Tomography scans using CycleGAN.
Methods. 2022 Sep;205:200-209. doi: 10.1016/j.ymeth.2022.07.007. Epub 2022 Jul 8.
8
Automatic lung segmentation in COVID-19 patients: Impact on quantitative computed tomography analysis.
Phys Med. 2021 Jul;87:115-122. doi: 10.1016/j.ejmp.2021.06.001. Epub 2021 Jun 7.
10
Does non-COVID-19 lung lesion help? investigating transferability in COVID-19 CT image segmentation.
Comput Methods Programs Biomed. 2021 Apr;202:106004. doi: 10.1016/j.cmpb.2021.106004. Epub 2021 Feb 23.

引用本文的文献

1
Practical Applications of Lung and Diaphragm Ultrasound in the Intensive Care Unit: An Updated Narrative Review.
Cureus. 2025 Jul 23;17(7):e88584. doi: 10.7759/cureus.88584. eCollection 2025 Jul.
2
Automatic deep learning-based pleural effusion segmentation in lung ultrasound images.
BMC Med Inform Decis Mak. 2023 Nov 29;23(1):274. doi: 10.1186/s12911-023-02362-6.
5
State of the Art in Lung Ultrasound, Shifting from Qualitative to Quantitative Analyses.
Ultrasound Med Biol. 2022 Dec;48(12):2398-2416. doi: 10.1016/j.ultrasmedbio.2022.07.007. Epub 2022 Sep 23.
6
New International Guidelines and Consensus on the Use of Lung Ultrasound.
J Ultrasound Med. 2023 Feb;42(2):309-344. doi: 10.1002/jum.16088. Epub 2022 Aug 22.
7
Review of Machine Learning in Lung Ultrasound in COVID-19 Pandemic.
J Imaging. 2022 Mar 5;8(3):65. doi: 10.3390/jimaging8030065.

本文引用的文献

3
Lung ultrasound: The future ahead and the lessons learned from COVID-19.
J Acoust Soc Am. 2020 Oct;148(4):2146. doi: 10.1121/10.0002183.
5
Detection of Line Artifacts in Lung Ultrasound Images of COVID-19 Patients Via Nonconvex Regularization.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Nov;67(11):2218-2229. doi: 10.1109/TUFFC.2020.3016092. Epub 2020 Aug 12.
6
Quantitative Lung Ultrasound Spectroscopy Applied to the Diagnosis of Pulmonary Fibrosis: The First Clinical Study.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Nov;67(11):2265-2273. doi: 10.1109/TUFFC.2020.3012289. Epub 2020 Jul 27.
7
Automatic Pleural Line Extraction and COVID-19 Scoring From Lung Ultrasound Data.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Nov;67(11):2207-2217. doi: 10.1109/TUFFC.2020.3005512. Epub 2020 Jun 29.
8
Deep Learning for Classification and Localization of COVID-19 Markers in Point-of-Care Lung Ultrasound.
IEEE Trans Med Imaging. 2020 Aug;39(8):2676-2687. doi: 10.1109/TMI.2020.2994459. Epub 2020 May 14.
9
Anosmia and Dysgeusia in the Absence of Other Respiratory Diseases: Should COVID-19 Infection Be Considered?
Eur J Case Rep Intern Med. 2020 Apr 3;7(4):001641. doi: 10.12890/2020_001641. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验