Suppr超能文献

三叉神经根节神经元膜特性的电压依赖性

Voltage dependence of membrane properties of trigeminal root ganglion neurons.

作者信息

Puil E, Gimbarzevsky B, Miura R M

出版信息

J Neurophysiol. 1987 Jul;58(1):66-86. doi: 10.1152/jn.1987.58.1.66.

Abstract
  1. Membrane potentials of trigeminal root ganglion neurons were varied systematically by intracellular injections of long-lasting step currents to determine the voltage dependence of their membrane electrical properties. The complex impedance and impedance magnitude functions were first determined using oscillatory input currents superimposed on these step currents. 2. Systematic step variations in the membrane potential led to qualitative changes in the impedance magnitude functions. Depolarization of neurons exhibiting resonance at their initial resting membrane potentials resulted in a reduction in the resonance behavior. Hyperpolarization of these neurons to membrane potentials of about -80 to -90 mV led to a disappearance of the resonant peak but increased the maximum of the impedance magnitude. 3. The complex impedance data were fitted with a neuronal model derived from linearized Hodgkin-Huxley-like equations, yielding estimates for the membrane properties. The four parameters of the model were 1) a time invariant, resting membrane conductance, Gr, 2) a voltage- and time-dependent conductance, GL, 3) a time constant, tau u, for the unknown ionic channels that are activated by the 2- to 5-mV oscillatory perturbation of the stepped membrane potential, and 4) Ci, the input capacitance. 4. The results of the curve-fitting procedures suggested that all parameters depended on membrane voltage. The most voltage-dependent parameters were GL and tau u throughout a 25- to 30-mV range that was subthreshold to the production of action potentials. Both Gr and GL increased with subthreshold depolarization. 5. These impedance data suggest the very important role of the membrane potential of the trigeminal root ganglion neurons on their abilities to synthesize and filter inputted electrical signals.
摘要
  1. 通过向三叉神经根神经节神经元内注射持续的阶跃电流来系统地改变其膜电位,以确定其膜电特性的电压依赖性。首先使用叠加在这些阶跃电流上的振荡输入电流来确定复阻抗和阻抗幅值函数。2. 膜电位的系统性阶跃变化导致阻抗幅值函数发生定性变化。在初始静息膜电位表现出共振的神经元去极化会导致共振行为减弱。将这些神经元超极化至约 -80 至 -90 mV 的膜电位会导致共振峰消失,但会增加阻抗幅值的最大值。3. 复阻抗数据用从线性化的类霍奇金 - 赫胥黎方程导出的神经元模型进行拟合,从而得出膜特性的估计值。该模型的四个参数为:1)一个时间不变的静息膜电导 Gr,2)一个电压和时间依赖性电导 GL,3)一个时间常数 τu,用于由阶跃膜电位的 2 至 5 mV 振荡扰动激活的未知离子通道,以及 4)输入电容 Ci。4. 曲线拟合程序的结果表明所有参数都依赖于膜电压。在低于动作电位产生阈值的 25 至 30 mV 范围内,最依赖电压的参数是 GL 和 τu。Gr 和 GL 都随着阈下去极化而增加。5. 这些阻抗数据表明三叉神经根神经节神经元的膜电位在其合成和过滤输入电信号的能力方面起着非常重要的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验