Suppr超能文献

嗅觉杏仁核神经元中θ频率范围内的电共振。

Electrical resonance in the θ frequency range in olfactory amygdala neurons.

作者信息

Vera Jorge, Pezzoli Maurizio, Pereira Ulises, Bacigalupo Juan, Sanhueza Magdalena

机构信息

Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile.

出版信息

PLoS One. 2014 Jan 21;9(1):e85826. doi: 10.1371/journal.pone.0085826. eCollection 2014.

Abstract

The cortical amygdala receives direct olfactory inputs and is thought to participate in processing and learning of biologically relevant olfactory cues. As for other brain structures implicated in learning, the principal neurons of the anterior cortical nucleus (ACo) exhibit intrinsic subthreshold membrane potential oscillations in the θ-frequency range. Here we show that nearly 50% of ACo layer II neurons also display electrical resonance, consisting of selective responsiveness to stimuli of a preferential frequency (2-6 Hz). Their impedance profile resembles an electrical band-pass filter with a peak at the preferred frequency, in contrast to the low-pass filter properties of other neurons. Most ACo resonant neurons displayed frequency preference along the whole subthreshold voltage range. We used pharmacological tools to identify the voltage-dependent conductances implicated in resonance. A hyperpolarization-activated cationic current depending on HCN channels underlies resonance at resting and hyperpolarized potentials; notably, this current also participates in resonance at depolarized subthreshold voltages. KV7/KCNQ K+ channels also contribute to resonant behavior at depolarized potentials, but not in all resonant cells. Moreover, resonance was strongly attenuated after blockade of voltage-dependent persistent Na+ channels, suggesting an amplifying role. Remarkably, resonant neurons presented a higher firing probability for stimuli of the preferred frequency. To fully understand the mechanisms underlying resonance in these neurons, we developed a comprehensive conductance-based model including the aforementioned and leak conductances, as well as Hodgkin and Huxley-type channels. The model reproduces the resonant impedance profile and our pharmacological results, allowing a quantitative evaluation of the contribution of each conductance to resonance. It also replicates selective spiking at the resonant frequency and allows a prediction of the temperature-dependent shift in resonance frequency. Our results provide a complete characterization of the resonant behavior of olfactory amygdala neurons and shed light on a putative mechanism for network activity coordination in the intact brain.

摘要

杏仁核皮质接受直接的嗅觉输入,被认为参与生物相关嗅觉线索的处理和学习。与其他参与学习的脑结构一样,前皮质核(ACo)的主要神经元在θ频率范围内表现出内在的阈下膜电位振荡。在这里,我们表明,近50%的ACo层II神经元也表现出电共振,即对优先频率(2-6赫兹)的刺激具有选择性反应。它们的阻抗谱类似于一个在优先频率处有峰值的电带通滤波器,这与其他神经元的低通滤波器特性形成对比。大多数ACo共振神经元在整个阈下电压范围内都表现出频率偏好。我们使用药理学工具来确定与共振相关的电压依赖性电导。一种依赖于HCN通道的超极化激活阳离子电流是静息和超极化电位下共振的基础;值得注意的是,这种电流也参与去极化阈下电压时的共振。KV7/KCNQ钾通道也对去极化电位下的共振行为有贡献,但并非在所有共振细胞中都如此。此外,电压依赖性持续性钠通道被阻断后,共振强烈减弱,表明其具有放大作用。值得注意的是,共振神经元对优先频率的刺激表现出更高的放电概率。为了全面理解这些神经元中共振的潜在机制,我们开发了一个基于电导的综合模型,该模型包括上述电导和漏电导,以及霍奇金和赫胥黎型通道。该模型再现了共振阻抗谱和我们的药理学结果,从而可以对每种电导对共振的贡献进行定量评估。它还复制了共振频率下的选择性放电,并可以预测共振频率的温度依赖性变化。我们的结果全面描述了嗅觉杏仁核神经元的共振行为,并揭示了完整大脑中网络活动协调的一种潜在机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f558/3897534/bdefa7f4331e/pone.0085826.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验