Laboratory of Synthetic, Perceptive, Emotive and Cognitive Systems (SPECS), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10-12, 08028, Barcelona, Spain.
Saddle Point Science Ltd, 10 Lincoln Street, York, UK.
J Neuroeng Rehabil. 2021 Dec 31;18(1):186. doi: 10.1186/s12984-021-00971-8.
After a stroke, a wide range of deficits can occur with varying onset latencies. As a result, assessing impairment and recovery are enormous challenges in neurorehabilitation. Although several clinical scales are generally accepted, they are time-consuming, show high inter-rater variability, have low ecological validity, and are vulnerable to biases introduced by compensatory movements and action modifications. Alternative methods need to be developed for efficient and objective assessment. In this study, we explore the potential of computer-based body tracking systems and classification tools to estimate the motor impairment of the more affected arm in stroke patients.
We present a method for estimating clinical scores from movement parameters that are extracted from kinematic data recorded during unsupervised computer-based rehabilitation sessions. We identify a number of kinematic descriptors that characterise the patients' hemiparesis (e.g., movement smoothness, work area), we implement a double-noise model and perform a multivariate regression using clinical data from 98 stroke patients who completed a total of 191 sessions with RGS.
Our results reveal a new digital biomarker of arm function, the Total Goal-Directed Movement (TGDM), which relates to the patients work area during the execution of goal-oriented reaching movements. The model's performance to estimate FM-UE scores reaches an accuracy of [Formula: see text]: 0.38 with an error ([Formula: see text]: 12.8). Next, we evaluate its reliability ([Formula: see text] for test-retest), longitudinal external validity ([Formula: see text] true positive rate), sensitivity, and generalisation to other tasks that involve planar reaching movements ([Formula: see text]: 0.39). The model achieves comparable accuracy also for the Chedoke Arm and Hand Activity Inventory ([Formula: see text]: 0.40) and Barthel Index ([Formula: see text]: 0.35).
Our results highlight the clinical value of kinematic data collected during unsupervised goal-oriented motor training with the RGS combined with data science techniques, and provide new insight into factors underlying recovery and its biomarkers.
中风后,患者可能会出现多种不同潜伏期的症状。因此,在神经康复中,评估损伤和恢复情况是一项巨大的挑战。尽管有几种临床量表被广泛接受,但它们耗时、评分者间差异大、生态效度低,并且容易受到代偿运动和动作修改带来的偏差的影响。需要开发替代方法以进行高效和客观的评估。在这项研究中,我们探索了基于计算机的身体跟踪系统和分类工具在估计中风患者患侧手臂运动障碍方面的潜力。
我们提出了一种从运动参数中估计临床评分的方法,这些参数是从患者在非监督计算机康复治疗期间记录的运动学数据中提取出来的。我们确定了一些运动学描述符,这些描述符可以描述患者的偏瘫(例如运动平滑度、工作区域),我们实现了一个双噪声模型,并使用来自 98 名中风患者的临床数据进行了多元回归,这些患者共完成了 191 次与 RGS 的治疗。
我们的结果揭示了一种新的手臂功能数字生物标志物,即总目标导向运动(TGDM),它与患者在执行目标导向的伸手运动时的工作区域有关。该模型估计 FM-UE 评分的性能达到了[公式:见文本]:0.38,误差[公式:见文本]:12.8。接下来,我们评估了其可靠性[公式:见文本](测试-重测)、纵向外部有效性[公式:见文本](真阳性率)、敏感性和对涉及平面伸手运动的其他任务的泛化能力[公式:见文本](0.39)。该模型对 Chedoke 手臂和手活动量表[公式:见文本](0.40)和巴氏量表[公式:见文本](0.35)也具有相当的准确性。
我们的结果突出了 RGS 结合数据科学技术在非监督目标导向运动训练中收集的运动学数据的临床价值,并为恢复及其生物标志物的潜在因素提供了新的见解。