Suppr超能文献

腰椎CT扫描无体模校准特有的骨密度准确性误差。

BMD accuracy errors specific to phantomless calibration of CT scans of the lumbar spine.

作者信息

Bartenschlager Stefan, Dankerl Peter, Chaudry Oliver, Uder Michael, Engelke Klaus

机构信息

Department of Medicine 3, FAU University Erlangen-Nürnberg and Universitätsklinikum, Erlangen, Germany; Institute of Medical Physics, FAU University Erlangen-Nürnberg, Erlangen, Germany.

Institute of Radiology, FAU University Erlangen-Nürnberg and Universitätsklinikum, Erlangen, Germany.

出版信息

Bone. 2022 Apr;157:116304. doi: 10.1016/j.bone.2021.116304. Epub 2021 Dec 29.

Abstract

Opportunistic screening using existing CT images may be a new strategy to identify subjects at increased risk for osteoporotic fracture. Low bone mineral density (BMD) is a key parameter but routine clinical CT scans do not include a calibration phantom to calculate BMD from the measured CT values. An alternative is internal or phantomless calibration, which is based on the CT values of air and of internal tissues of the subject such as blood, muscle or adipose tissue. However, the composition and as a consequence the CT values of these so-called internal calibration materials vary among subjects, which introduces additional BMD accuracy errors compared to phantom based calibration. The objective of this study was to quantify these accuracy errors and to identify optimum combinations of internal calibration materials (IM) for BMD assessments in opportunistic screening. Based on the base material decomposition theory we demonstrate how BMD can be derived from the CT values of the internal calibration materials. 121 CT datasets of the lumbar spine form postmenopausal women were used to determine the population variance of blood assessed in the aorta or the inferior vena cava, skeletal muscle of the erector spinae or psoas, subcutaneous adipose tissue (SAT) and air. The corresponding standard deviations were used for error propagation to determine phantomless calibration related BMD accuracy errors. Using a CT value of 150 HU, a typical value of trabecular bone, simulated BMD accuracy errors for most IM combinations containing air as one of the two base materials were below 5% or 6 mg/cm. The lowest errors were determined for the combination of blood and air (<2 mg/cm). The combination of blood and skeletal muscle resulted in higher errors (>10.5% or >12 mg/cm) and is not recommended. Due to possible age-related differences in tissue composition, the selection of IMs is suggested to be adapted according to the measured subject. In younger subjects without significant aortic calcifications, air and blood of the aorta may be the best combination whereas in elderly subjects, air and SAT (error of 4%) may be preferable. The use of skeletal muscle as one of the two IMs is discouraged, in particular in elderly subjects because of varying fatty infiltration. A practical implementation of the internal calibration with different IM pairs confirmed the theoretical results. In summary, compared to a phantom based calibration the phantomless approach used for opportunistic screening creates additional BMD accuracy errors of 2% or more, dependent on the used internal reference tissues. The impact on fracture prediction still must be evaluated.

摘要

利用现有CT图像进行机会性筛查可能是一种识别骨质疏松性骨折风险增加人群的新策略。低骨密度(BMD)是一个关键参数,但常规临床CT扫描不包括用于根据测量的CT值计算BMD的校准体模。另一种方法是内部或无体模校准,它基于空气以及受试者内部组织(如血液、肌肉或脂肪组织)的CT值。然而,这些所谓内部校准材料的组成以及相应的CT值在不同受试者之间存在差异,与基于体模的校准相比,这会引入额外的BMD准确性误差。本研究的目的是量化这些准确性误差,并确定机会性筛查中用于BMD评估的内部校准材料(IM)的最佳组合。基于基础材料分解理论,我们展示了如何从内部校准材料的CT值推导出BMD。使用121名绝经后女性腰椎的CT数据集来确定在主动脉或下腔静脉中评估的血液、竖脊肌或腰大肌的骨骼肌、皮下脂肪组织(SAT)和空气的总体方差。相应的标准差用于误差传播,以确定无体模校准相关的BMD准确性误差。使用150HU(小梁骨典型值)的CT值,对于大多数包含空气作为两种基础材料之一的IM组合,模拟的BMD准确性误差低于5%或6mg/cm。血液和空气的组合误差最低(<2mg/cm)。血液和骨骼肌的组合导致更高的误差(>10.5%或>12mg/cm),不建议使用。由于组织组成可能存在与年龄相关的差异,建议根据被测受试者调整IM的选择。在没有明显主动脉钙化的年轻受试者中,主动脉的空气和血液可能是最佳组合,而在老年受试者中,空气和SAT(误差为4%)可能更可取。不鼓励将骨骼肌用作两种IM之一,特别是在老年受试者中,因为脂肪浸润情况不同。使用不同IM对进行内部校准的实际操作证实了理论结果。总之,与基于体模的校准相比,用于机会性筛查的无体模方法会产生2%或更高的额外BMD准确性误差,这取决于所使用的内部参考组织。对骨折预测的影响仍需评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验