Reeve-Irvine Research Center, University of California Irvine School of Medicine, USA; Department of Anatomy & Neurobiology, University of California Irvine School of Medicine, USA.
Department of Physiology, Tongji Medical College, Huazhong University of Science and Technology, China.
Exp Neurol. 2022 Apr;350:113965. doi: 10.1016/j.expneurol.2021.113965. Epub 2021 Dec 30.
This paper explores the potential of rAAV2-retro to deliver gene modifying cargoes to the cells of origin of multiple pathways that are interrupted by spinal cord injury (SCI), summarizing data from previous studies and new data from additional experiments. rAAV-retro exhibits uniquely robust and reliable long-distance retrograde transport from pre-terminal axons and synapses back to neuronal bodies. Previous studies have documented that various AAV-based genetic modifications can enable axon regeneration after SCI, but these have targeted the cells of origin of one pathway at a time. In contrast, rAAV-retro can simultaneously transduce large numbers of neurons of origin of multiple spinal pathways with single injections into the spinal cord. Our initial studies use Rosa and double transgenic PTEN; Rosa mice in which transfection with rAAV-retro/Cre deletes PTEN and activates tdT expression in the same neurons. Injections of rAAV-retro/Cre into the cervical, thoracic and lumbar spinal cord led to topographically specific retrograde transduction in cortical motoneurons and neurons in subcortical regions that give rise to different spinal pathways. Our results confirm and extend previous studies indicating selective transduction of neurons that terminate at the level of the injection with minimal retrograde transduction of axons in transit to lower levels. We document feasibility of using rAAV-retro expressing shRNA against PTEN along with a GFP reporter (rAAV-retro-shPTEN/GFP) to effectively knock down PTEN in multiple populations of neurons, which can be used in any species. Some limitations and caveats of currently available rAAV-retros are discussed. Together, our results support the potential applications of rAAV-retro for AAV-based gene-modifications for SCI.
本文探讨了 rAAV2-retro 将基因修饰载体递送到脊髓损伤 (SCI) 中断的多个通路的起始细胞的潜力,总结了之前研究的数据和新的额外实验数据。rAAV-retro 表现出独特的强大和可靠的长距离逆行运输,从末梢轴突和突触回到神经元体。之前的研究已经证明,各种基于 AAV 的基因修饰可以促进 SCI 后的轴突再生,但这些研究一次只针对一个通路的起始细胞。相比之下,rAAV-retro 可以通过单次脊髓内注射同时转导多个脊髓通路的大量起始神经元。我们的初步研究使用了 Rosa 和双转基因 PTEN; Rosa 小鼠中,rAAV-retro/Cre 的转染会删除 PTEN 并在相同神经元中激活 tdT 表达。将 rAAV-retro/Cre 注射到颈、胸和腰段脊髓会导致皮质运动神经元和起源于不同脊髓通路的皮质下区域神经元的拓扑特异性逆行转导。我们的结果证实并扩展了之前的研究,表明选择性转导终止于注射部位的神经元,同时对向较低水平迁移的轴突进行最小逆行转导。我们证明了使用表达 shRNA 针对 PTEN 并带有 GFP 报告基因 (rAAV-retro-shPTEN/GFP) 的 rAAV-retro 的可行性,以有效敲低多种神经元群体中的 PTEN,这可用于任何物种。目前可用的 rAAV-retro 存在一些局限性和注意事项。总之,我们的结果支持 rAAV-retro 在 SCI 中基于 AAV 的基因修饰的潜在应用。