Suppr超能文献

短发夹 RNA 靶向 PTEN 增强脊髓损伤后皮质脊髓束轴突的再生生长。

Short hairpin RNA against PTEN enhances regenerative growth of corticospinal tract axons after spinal cord injury.

机构信息

F. M. Kirby Program in Neuroscience, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, and Smurfit Institute of Genetics, Trinity College, Dublin 2, Ireland.

出版信息

J Neurosci. 2013 Sep 25;33(39):15350-61. doi: 10.1523/JNEUROSCI.2510-13.2013.

Abstract

Developing approaches to promote the regeneration of descending supraspinal axons represents an ideal strategy for rebuilding neuronal circuits to improve functional recovery after spinal cord injury (SCI). Our previous studies demonstrated that genetic deletion of phosphatase and tensin homolog (PTEN) in mouse corticospinal neurons reactivates their regenerative capacity, resulting in significant regeneration of corticospinal tract (CST) axons after SCI. However, it is unknown whether nongenetic methods of suppressing PTEN have similar effects and how regenerating axons interact with the extrinsic environment. Herein, we show that suppressing PTEN expression with short-hairpin RNA (shRNA) promotes the regeneration of injured CST axons, and these axons form anatomical synapses in appropriate areas of the cord caudal to the lesion. Importantly, this model of increased CST regrowth enables the analysis of extrinsic regulators of CST regeneration in vivo. We find that regenerating axons avoid dense clusters of fibroblasts and macrophages in the lesion, suggesting that these cell types might be key inhibitors of axon regeneration. Furthermore, most regenerating axons cross the lesion in association with astrocytes, indicating that these cells might be important for providing a permissive bridge for axon regeneration. Lineage analysis reveals that these bridge-forming astrocytes are not derived from ependymal stem cells within the spinal cord, suggesting that they are more likely derived from a subset of mature astrocytes. Overall, this study reveals insights into the critical extrinsic and intrinsic regulators of axon regeneration and establishes shRNA as a viable means to manipulate these regulators and translate findings into other mammalian models.

摘要

开发促进下行脊髓轴突再生的方法代表了一种理想的策略,可用于重建神经元回路,以改善脊髓损伤 (SCI) 后的功能恢复。我们之前的研究表明,在小鼠皮质脊髓神经元中敲除磷酸酶和张力蛋白同源物 (PTEN) 可重新激活其再生能力,从而导致 SCI 后皮质脊髓束 (CST) 轴突的大量再生。然而,尚不清楚非遗传方法抑制 PTEN 是否具有相似的效果,以及再生轴突与外在环境如何相互作用。在此,我们表明短发夹 RNA (shRNA) 抑制 PTEN 表达可促进损伤 CST 轴突的再生,并且这些轴突在损伤尾部脊髓的适当区域形成解剖学突触。重要的是,这种 CST 过度生长的模型能够在体内分析 CST 再生的外在调节因子。我们发现再生轴突避开损伤部位中密集的成纤维细胞和巨噬细胞簇,表明这些细胞类型可能是轴突再生的关键抑制剂。此外,大多数再生轴突与星形胶质细胞一起穿过损伤部位,表明这些细胞可能对于提供轴突再生的允许性桥梁很重要。谱系分析表明,这些形成桥接的星形胶质细胞不是源自脊髓内的室管膜干细胞,表明它们更可能源自成熟星形胶质细胞的一个子集。总的来说,这项研究揭示了轴突再生的关键外在和内在调节因子的见解,并确立了 shRNA 作为一种可行的手段来操纵这些调节因子,并将研究结果转化为其他哺乳动物模型。

相似文献

引用本文的文献

1
Mechanisms underpinning spontaneous spinal cord regeneration.脊髓自发再生的潜在机制。
Development. 2025 Oct 15;152(20). doi: 10.1242/dev.204790. Epub 2025 Jul 30.
2
Research status of regenerative difficulties after central nervous system injury.中枢神经系统损伤后再生困难的研究现状
Regen Ther. 2025 Apr 30;29:493-498. doi: 10.1016/j.reth.2025.04.011. eCollection 2025 Jun.
3
The Glial Scar: To Penetrate or Not for Motor Pathway Restoration?胶质瘢痕:穿透与否以恢复运动通路?
Cell Transplant. 2025 Jan-Dec;34:9636897251315271. doi: 10.1177/09636897251315271. Epub 2025 Mar 28.

本文引用的文献

5
Genomic analysis of reactive astrogliosis.反应性星形胶质细胞的基因组分析。
J Neurosci. 2012 May 2;32(18):6391-410. doi: 10.1523/JNEUROSCI.6221-11.2012.
9
Neuronal intrinsic mechanisms of axon regeneration.神经元轴突再生的内在机制。
Annu Rev Neurosci. 2011;34:131-52. doi: 10.1146/annurev-neuro-061010-113723.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验