Suppr超能文献

短发夹 RNA 靶向 PTEN 增强脊髓损伤后皮质脊髓束轴突的再生生长。

Short hairpin RNA against PTEN enhances regenerative growth of corticospinal tract axons after spinal cord injury.

机构信息

F. M. Kirby Program in Neuroscience, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, and Smurfit Institute of Genetics, Trinity College, Dublin 2, Ireland.

出版信息

J Neurosci. 2013 Sep 25;33(39):15350-61. doi: 10.1523/JNEUROSCI.2510-13.2013.

Abstract

Developing approaches to promote the regeneration of descending supraspinal axons represents an ideal strategy for rebuilding neuronal circuits to improve functional recovery after spinal cord injury (SCI). Our previous studies demonstrated that genetic deletion of phosphatase and tensin homolog (PTEN) in mouse corticospinal neurons reactivates their regenerative capacity, resulting in significant regeneration of corticospinal tract (CST) axons after SCI. However, it is unknown whether nongenetic methods of suppressing PTEN have similar effects and how regenerating axons interact with the extrinsic environment. Herein, we show that suppressing PTEN expression with short-hairpin RNA (shRNA) promotes the regeneration of injured CST axons, and these axons form anatomical synapses in appropriate areas of the cord caudal to the lesion. Importantly, this model of increased CST regrowth enables the analysis of extrinsic regulators of CST regeneration in vivo. We find that regenerating axons avoid dense clusters of fibroblasts and macrophages in the lesion, suggesting that these cell types might be key inhibitors of axon regeneration. Furthermore, most regenerating axons cross the lesion in association with astrocytes, indicating that these cells might be important for providing a permissive bridge for axon regeneration. Lineage analysis reveals that these bridge-forming astrocytes are not derived from ependymal stem cells within the spinal cord, suggesting that they are more likely derived from a subset of mature astrocytes. Overall, this study reveals insights into the critical extrinsic and intrinsic regulators of axon regeneration and establishes shRNA as a viable means to manipulate these regulators and translate findings into other mammalian models.

摘要

开发促进下行脊髓轴突再生的方法代表了一种理想的策略,可用于重建神经元回路,以改善脊髓损伤 (SCI) 后的功能恢复。我们之前的研究表明,在小鼠皮质脊髓神经元中敲除磷酸酶和张力蛋白同源物 (PTEN) 可重新激活其再生能力,从而导致 SCI 后皮质脊髓束 (CST) 轴突的大量再生。然而,尚不清楚非遗传方法抑制 PTEN 是否具有相似的效果,以及再生轴突与外在环境如何相互作用。在此,我们表明短发夹 RNA (shRNA) 抑制 PTEN 表达可促进损伤 CST 轴突的再生,并且这些轴突在损伤尾部脊髓的适当区域形成解剖学突触。重要的是,这种 CST 过度生长的模型能够在体内分析 CST 再生的外在调节因子。我们发现再生轴突避开损伤部位中密集的成纤维细胞和巨噬细胞簇,表明这些细胞类型可能是轴突再生的关键抑制剂。此外,大多数再生轴突与星形胶质细胞一起穿过损伤部位,表明这些细胞可能对于提供轴突再生的允许性桥梁很重要。谱系分析表明,这些形成桥接的星形胶质细胞不是源自脊髓内的室管膜干细胞,表明它们更可能源自成熟星形胶质细胞的一个子集。总的来说,这项研究揭示了轴突再生的关键外在和内在调节因子的见解,并确立了 shRNA 作为一种可行的手段来操纵这些调节因子,并将研究结果转化为其他哺乳动物模型。

相似文献

1
Short hairpin RNA against PTEN enhances regenerative growth of corticospinal tract axons after spinal cord injury.
J Neurosci. 2013 Sep 25;33(39):15350-61. doi: 10.1523/JNEUROSCI.2510-13.2013.
2
Modulation of Both Intrinsic and Extrinsic Factors Additively Promotes Rewiring of Corticospinal Circuits after Spinal Cord Injury.
J Neurosci. 2021 Dec 15;41(50):10247-10260. doi: 10.1523/JNEUROSCI.2649-20.2021. Epub 2021 Nov 10.
3
Pten Deletion Promotes Regrowth of Corticospinal Tract Axons 1 Year after Spinal Cord Injury.
J Neurosci. 2015 Jul 1;35(26):9754-63. doi: 10.1523/JNEUROSCI.3637-14.2015.
4
PTEN deletion enhances the regenerative ability of adult corticospinal neurons.
Nat Neurosci. 2010 Sep;13(9):1075-81. doi: 10.1038/nn.2603. Epub 2010 Aug 8.
8
Effects of PTEN and Nogo Codeletion on Corticospinal Axon Sprouting and Regeneration in Mice.
J Neurosci. 2015 Apr 22;35(16):6413-28. doi: 10.1523/JNEUROSCI.4013-14.2015.

引用本文的文献

1
Mechanisms underpinning spontaneous spinal cord regeneration.
Development. 2025 Oct 15;152(20). doi: 10.1242/dev.204790. Epub 2025 Jul 30.
2
Research status of regenerative difficulties after central nervous system injury.
Regen Ther. 2025 Apr 30;29:493-498. doi: 10.1016/j.reth.2025.04.011. eCollection 2025 Jun.
3
The Glial Scar: To Penetrate or Not for Motor Pathway Restoration?
Cell Transplant. 2025 Jan-Dec;34:9636897251315271. doi: 10.1177/09636897251315271. Epub 2025 Mar 28.
4
Spinal cord injury and inflammatory mediators: Role in "fire barrier" formation and potential for neural regeneration.
Neural Regen Res. 2026 Mar 1;21(3):923-937. doi: 10.4103/NRR.NRR-D-24-00792. Epub 2025 Feb 24.
5
A bibliometric analysis of the top 100 most cited articles on corticospinal tract regeneration from 2004 to 2024.
Front Neurosci. 2025 Jan 28;18:1509850. doi: 10.3389/fnins.2024.1509850. eCollection 2024.
6
Enhancing neural stem cell integration in the injured spinal cord through targeted PTEN modulation.
Neural Regen Res. 2026 Apr 1;21(4):1586-1594. doi: 10.4103/NRR.NRR-D-24-00455. Epub 2025 Jan 29.
7
Hyperactive delta isoform of PI3 kinase enables long-distance regeneration of adult rat corticospinal tract.
Mol Ther. 2025 Feb 5;33(2):752-770. doi: 10.1016/j.ymthe.2024.12.040. Epub 2025 Jan 1.
8
Targeting Remyelination in Spinal Cord Injury: Insights and Emerging Therapeutic Strategies.
CNS Neurosci Ther. 2024 Dec;30(12):1-15. doi: 10.1111/cns.70193.
9
Molecular signaling predicts corticospinal axon growth state and muscle response plasticity induced by neuromodulation.
Proc Natl Acad Sci U S A. 2024 Nov 19;121(47):e2408508121. doi: 10.1073/pnas.2408508121. Epub 2024 Nov 13.
10
Nonresolving Neuroinflammation Regulates Axon Regeneration in Chronic Spinal Cord Injury.
J Neurosci. 2025 Jan 1;45(1):e1017242024. doi: 10.1523/JNEUROSCI.1017-24.2024.

本文引用的文献

1
DLK initiates a transcriptional program that couples apoptotic and regenerative responses to axonal injury.
Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):4039-44. doi: 10.1073/pnas.1211074110. Epub 2013 Feb 19.
2
NIH Image to ImageJ: 25 years of image analysis.
Nat Methods. 2012 Jul;9(7):671-5. doi: 10.1038/nmeth.2089.
3
Regional astrocyte allocation regulates CNS synaptogenesis and repair.
Science. 2012 Jul 20;337(6092):358-62. doi: 10.1126/science.1222381. Epub 2012 Jun 28.
4
Dual leucine zipper kinase is required for retrograde injury signaling and axonal regeneration.
Neuron. 2012 Jun 21;74(6):1015-22. doi: 10.1016/j.neuron.2012.04.028.
5
Genomic analysis of reactive astrogliosis.
J Neurosci. 2012 May 2;32(18):6391-410. doi: 10.1523/JNEUROSCI.6221-11.2012.
6
Krüppel-like Factor 7 engineered for transcriptional activation promotes axon regeneration in the adult corticospinal tract.
Proc Natl Acad Sci U S A. 2012 May 8;109(19):7517-22. doi: 10.1073/pnas.1120684109. Epub 2012 Apr 23.
7
Sustained axon regeneration induced by co-deletion of PTEN and SOCS3.
Nature. 2011 Nov 6;480(7377):372-5. doi: 10.1038/nature10594.
8
Role of myelin-associated inhibitors in axonal repair after spinal cord injury.
Exp Neurol. 2012 May;235(1):33-42. doi: 10.1016/j.expneurol.2011.05.001. Epub 2011 May 7.
9
Neuronal intrinsic mechanisms of axon regeneration.
Annu Rev Neurosci. 2011;34:131-52. doi: 10.1146/annurev-neuro-061010-113723.
10
Pten knockdown in vivo increases excitatory drive onto dentate granule cells.
J Neurosci. 2011 Mar 16;31(11):4345-54. doi: 10.1523/JNEUROSCI.0061-11.2011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验