Rodríguez Sánchez Rodrigo A, Matulewicz María C, Ciancia Marina
Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Biología Aplicada y Alimentos, Cátedra de Química de Biomoléculas, Av. San Martín 4453, C1417DSE Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Centro de Investigación de Hidratos de Carbono (CIHIDECAR), Ciudad Universitaria - Pabellón 2, C1428EHA Buenos Aires, Argentina.
CONICET-Universidad de Buenos Aires, Centro de Investigación de Hidratos de Carbono (CIHIDECAR), Ciudad Universitaria - Pabellón 2, C1428EHA Buenos Aires, Argentina.
Int J Biol Macromol. 2022 Feb 28;199:386-400. doi: 10.1016/j.ijbiomac.2021.12.080. Epub 2021 Dec 30.
Some sulfated polysaccharides from red seaweeds are used as hydrocolloids. In addition, it is well known that there are sulfated galactans (carrageenans and agarans) and sulfated mannans, with remarkable biological properties, as antiviral, antitumoral, immunomodulating, antiangiogenic, antioxidant, anticoagulant, and antithrombotic activities, and so on. Knowledge of the detailed structure of the active compound is essential and difficult to acquire. The substitution patterns of the polymer chain, as degree of sulfation and position of sulfate groups, as well as other substituents of the backbone, determine their biological behavior. NMR spectroscopy is a powerful and versatile tool for structural determination. It can be used for elucidation of structures of polysaccharides from new algal sources with novel substitutions or to detect the already known structures from different algal sources, and it could even help to monitor the quality of the active compound on a productive scale. In this review, the available information about NMR spectroscopy of sulfated polysaccharides from red seaweeds is revised and rationalized, to help other researchers working in different fields to study their structures. In addition, considerations about the effects of different structural features, as well as some recording conditions on the chemical shifts of the signals are analyzed.
一些来自红藻的硫酸化多糖被用作水胶体。此外,众所周知,存在具有显著生物学特性的硫酸化半乳聚糖(卡拉胶和琼脂糖)和硫酸化甘露聚糖,如抗病毒、抗肿瘤、免疫调节、抗血管生成、抗氧化、抗凝和抗血栓形成等活性。了解活性化合物的详细结构至关重要且难以获得。聚合物链的取代模式,如硫酸化程度和硫酸根基团的位置,以及主链的其他取代基,决定了它们的生物学行为。核磁共振光谱是一种用于结构测定的强大且通用的工具。它可用于阐明来自具有新取代基的新藻类来源的多糖结构,或检测来自不同藻类来源的已知结构,甚至有助于在生产规模上监测活性化合物的质量。在本综述中,对来自红藻的硫酸化多糖的核磁共振光谱的现有信息进行了修订和梳理,以帮助不同领域的其他研究人员研究它们的结构。此外,还分析了不同结构特征以及一些记录条件对信号化学位移的影响。