Yi Shujun, Morson Nadia, Edwards Elizabeth A, Yang Diwen, Liu Runzeng, Zhu Lingyan, Mabury Scott A
Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
Department of Chemistry, University of Toronto, Toronto M5S 3H6, Ontario, Canada.
Environ Sci Technol. 2022 Jan 18;56(2):907-916. doi: 10.1021/acs.est.1c05475. Epub 2022 Jan 3.
The microbial transformation potential of 6:2 chlorinated polyfluorooctane ether sulfonate (6:2 Cl-PFESA) was explored in anaerobic microbial systems. Microbial communities from anaerobic wastewater sludge, an anaerobic digester, and anaerobic dechlorinating cultures enriched from aquifer materials reductively dechlorinated 6:2 Cl-PFESA to 6:2 hydrogen-substituted polyfluorooctane ether sulfonate (6:2 H-PFESA), which was identified as the sole metabolite by non-target analysis. Rapid and complete reductive dechlorination of 6:2 Cl-PFESA was achieved by the anaerobic dechlorinating cultures. The microbial community of the anaerobic dechlorinating cultures was impacted by 6:2 Cl-PFESA exposure. Organohalide-respiring bacteria originally present in the anaerobic dechlorinating cultures, including , , and , decreased in relative abundance over time. As the relative abundance of organohalide-respiring bacteria decreased, the rates of 6:2 Cl-PFESA dechlorination decreased, suggesting that the most likely mechanism for reductive dechlorination of 6:2 Cl-PFESA was co-metabolism rather than organohalide respiration. Reductive defluorination of 6:2 Cl-PFESA was not observed. Furthermore, 6:2 H-PFESA exhibited 5.5 times lower sorption affinity to the suspended biosolids than 6:2 Cl-PFESA, with the prospect of increased mobility in the environment. These results show the susceptibility of 6:2 Cl-PFESA to microbially mediated reductive dechlorination and the likely persistence of the product, 6:2 H-PFESA, in anaerobic environments.
在厌氧微生物系统中探究了6:2氯化多氟辛烷醚磺酸盐(6:2 Cl-PFESA)的微生物转化潜力。来自厌氧废水污泥、厌氧消化器以及从含水层材料中富集的厌氧脱氯培养物中的微生物群落,将6:2 Cl-PFESA还原脱氯为6:2氢取代多氟辛烷醚磺酸盐(6:2 H-PFESA),通过非靶向分析确定其为唯一代谢产物。厌氧脱氯培养物实现了6:2 Cl-PFESA的快速完全还原脱氯。6:2 Cl-PFESA的暴露对厌氧脱氯培养物的微生物群落产生了影响。厌氧脱氯培养物中原本存在的有机卤化物呼吸细菌,包括[具体细菌名称未给出]、[具体细菌名称未给出]和[具体细菌名称未给出],其相对丰度随时间下降。随着有机卤化物呼吸细菌相对丰度的降低,6:2 Cl-PFESA的脱氯速率也降低,这表明6:2 Cl-PFESA还原脱氯最可能的机制是共代谢而非有机卤化物呼吸。未观察到6:2 Cl-PFESA的还原脱氟。此外,6:2 H-PFESA对悬浮生物固体的吸附亲和力比6:2 Cl-PFESA低5.5倍,在环境中有增加迁移性的可能性。这些结果表明6:2 Cl-PFESA易受微生物介导的还原脱氯作用影响,且其产物6:2 H-PFESA在厌氧环境中可能具有持久性。