Suppr超能文献

利用机器学习开发一种评估脑卒中患者 5 项功能的短式量表。

Using Machine Learning to Develop a Short-Form Measure Assessing 5 Functions in Patients With Stroke.

机构信息

Master Program in Long-Term Care, College of Nursing, Taipei Medical University, Taipei, Taiwan.

Department of Occupational Therapy, School of Health Professions, University of Texas Medical Branch, Galveston, TX.

出版信息

Arch Phys Med Rehabil. 2022 Aug;103(8):1574-1581. doi: 10.1016/j.apmr.2021.12.006. Epub 2021 Dec 31.

Abstract

OBJECTIVE

This study aimed to develop and validate a machine learning-based short measure to assess 5 functions (the ML-5F) (activities of daily living [ADL], balance, upper extremity [UE] and lower extremity [LE] motor function, and mobility) in patients with stroke.

DESIGN

Secondary data from a previous study. A follow-up study assessed patients with stroke using the Barthel Index (BI), Postural Assessment Scale for Stroke (PASS), and Stroke Rehabilitation Assessment of Movement (STREAM) at hospital admission and discharge.

SETTING

A rehabilitation unit in a medical center.

PARTICIPANTS

Patients (N=307) with stroke.

INTERVENTIONS

Not applicable.

MAIN OUTCOME MEASURES

The BI, PASS, and STREAM.

RESULTS

A machine learning algorithm, Extreme Gradient Boosting, was used to select 15 items from the BI, PASS, and STREAM, and transformed the raw scores of the selected items into the scores of the ML-5F. The ML-5F demonstrated good concurrent validity (Pearson's r, 0.88-0.98) and responsiveness (standardized response mean, 0.28-1.01).

CONCLUSIONS

The ML-5F comprises only 15 items but demonstrates sufficient concurrent validity and responsiveness to assess ADL, balance, UE and LE functions, and mobility in patients with stroke. The ML-5F shows great potential as an efficient outcome measure in clinical settings.

摘要

目的

本研究旨在开发和验证一种基于机器学习的简短测量工具,以评估 5 项功能(ML-5F)(日常生活活动[ADL]、平衡、上肢[UE]和下肢[LE]运动功能以及移动能力),适用于脑卒中患者。

设计

来自先前研究的二次数据。一项随访研究在患者入院和出院时使用巴氏指数(BI)、脑卒中姿势评估量表(PASS)和脑卒中运动康复评估量表(STREAM)评估脑卒中患者。

设置

医疗中心的康复病房。

参与者

脑卒中患者(N=307)。

干预措施

无。

主要观察指标

BI、PASS 和 STREAM。

结果

使用极端梯度提升机器学习算法从 BI、PASS 和 STREAM 中选择 15 项,将所选项目的原始得分转换为 ML-5F 的得分。ML-5F 表现出良好的同时效度(Pearson r,0.88-0.98)和反应度(标准化反应均值,0.28-1.01)。

结论

ML-5F 仅包含 15 项,但足以评估脑卒中患者的 ADL、平衡、UE 和 LE 功能以及移动能力,具有足够的同时效度和反应度。ML-5F 在临床环境中作为一种高效的结局测量工具具有巨大潜力。

相似文献

本文引用的文献

2
Psychometric and Machine Learning Approaches to Reduce the Length of Scales.心理计量学和机器学习方法可用于缩短量表的长度。
Multivariate Behav Res. 2021 Nov-Dec;56(6):903-919. doi: 10.1080/00273171.2020.1781585. Epub 2020 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验