Department of Chemistry, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan.
Department of Chemical Engineering, R&D Center for Membrane Technology and Luh Hwa Research Center for Circular Economy, Chung Yuan Christian University, Chungli Dist, Taoyuan City 32023, Taiwan.
J Colloid Interface Sci. 2022 Apr 15;612:76-87. doi: 10.1016/j.jcis.2021.12.124. Epub 2021 Dec 23.
Developing battery-supercapacitor hybrid devices (BSHs) is viewed as an efficient route to shorten the gap between supercapacitors and batteries. In this study, a composite hydrogel consisting of perylene tetracarboxylic diimide (PTCDI) and reduced graphene oxide (rGO) is tested as the anode for BSHs in the electrolyte of ammonium acetate (NHAc) with a record concentration of 32 molality (m). This water-in-salt electrolyte exhibits a wide electrochemical stability window of 2.13 V and high conductivity of 23.3 mS cm even at -12 °C. Molecular dynamics calculations and spectroscopic measurements reveal that a favorable water-acetate interaction occurs in a high concentration NHAc electrolyte. On the other hand, the study of electrode kinetics in 32 m NHAc demonstrates a high capacitive contribution to charge storage in PTCDI-rGO although an electrode redox reaction involves reversible enolization of carbonyl groups in PTCDI. This result suggests fast NH-ion intercalation kinetics in charge-discharge processes. Furthermore, the electrode performance is improved by optimizing the loading amount of rGO in composites. The best-performing composite electrode delivers the maximum capacity of 165 mAh g at 0.5 A g and sustains a great capacity retention of 66% at 8 A g. Finally, an all-organic BSH device is tested in a broad temperature window from -20 to 50 °C and is well operated at 1.9 V regardless of operating temperatures. Due to the synergetic effect of splendid electrolyte properties and high anode capacities, BSH devices possess the maximum energy density of 12.9 Wh kg at the power density of 827 W kg and retain 74 % of the initial capacity after 3000 cycles at 1 A g. Our study paves a novel route towards designing inexpensive and environmentally friendly BSH devices with high performances.
开发电池-超级电容器混合器件(BSH)被视为缩短超级电容器和电池之间差距的有效途径。在这项研究中,以具有创纪录浓度 32 克分子(m)的乙酸铵(NHAc)电解质为测试对象,将由苝四羧酸二酰亚胺(PTCDI)和还原氧化石墨烯(rGO)组成的复合水凝胶用作 BSH 的阳极。这种盐水电解质具有 2.13 V 的宽电化学稳定窗口和 23.3 mS cm 的高电导率,即使在-12°C 下也是如此。分子动力学计算和光谱测量表明,在高浓度 NHAc 电解质中存在有利的水-乙酸盐相互作用。另一方面,在 32 m NHAc 中的电极动力学研究表明,尽管电极氧化还原反应涉及 PTCDI 中羰基的可逆烯醇化,但电荷存储中存在高电容贡献。这一结果表明在充放电过程中 NH-离子的嵌入动力学很快。此外,通过优化复合材料中 rGO 的负载量可以改善电极性能。性能最佳的复合电极在 0.5 A g 时的最大容量为 165 mAh g,在 8 A g 时保持 66%的出色容量保持率。最后,在从-20 至 50°C 的宽温度窗口下测试了全有机 BSH 器件,并且无论操作温度如何,在 1.9 V 时都能很好地运行。由于出色的电解质性质和高阳极容量的协同效应,BSH 器件在 827 W kg 的功率密度下具有 12.9 Wh kg 的最大能量密度,并在 1 A g 下经过 3000 次循环后保留初始容量的 74%。我们的研究为设计具有高性能的廉价且环保的 BSH 器件开辟了一条新途径。