Suppr超能文献

牛蛙球囊毛细胞机械电转导的适应性

Adaptation of mechanoelectrical transduction in hair cells of the bullfrog's sacculus.

作者信息

Eatock R A, Corey D P, Hudspeth A J

出版信息

J Neurosci. 1987 Sep;7(9):2821-36. doi: 10.1523/JNEUROSCI.07-09-02821.1987.

Abstract

Adaptation in a vestibular organ, the bullfrog's sacculus, was studied in vivo and in vitro. In the in vivo experiments, the discharge of primary saccular neurons and the extracellular response of saccular hair cells were recorded during steps of linear acceleration. The saccular neurons responded at the onset of the acceleration steps, then adapted fully within 10-50 msec. The extracellular (microphonic) response of the hair cells adapted with a similar time course, indicating that the primary sources of the neural adaptation are peripheral to the afferent synapse--in the hair cell, its mechanical inputs, or both. Evidence for hair cell adaptation was provided by 2 in vitro preparations: after excising the sacculus and removing the accessory structures, we recorded either the extracellular hair cell response to displacement of the otolithic membrane or the intracellular hair cell response to hair bundle displacement. In both cases the response to a step stimulus adapted. The adaptation involved a shift in the displacement-response curve along the displacement axis, so that the cell's operating point was reset toward the static position of its hair bundle. This displacement shift occurred in response to both depolarizing and hyperpolarizing stimuli. Its time course varied among cells, from tens to hundreds of milliseconds, and also varied with the concentration of Ca2+ bathing the apical surfaces of the hair cells. Voltage-clamp experiments suggested that the displacement shift does not depend simply on ion entry through the hair cell's transduction channels and can occur at a fixed membrane potential. The possible role of the displacement-shift process in the function of the frog's sacculus as a very sensitive vibration detector is discussed.

摘要

我们对牛蛙球囊这一前庭器官的适应性进行了体内和体外研究。在体内实验中,记录了线性加速度过程中初级球囊神经元的放电情况以及球囊毛细胞的细胞外反应。球囊神经元在加速度开始时做出反应,然后在10 - 50毫秒内完全适应。毛细胞的细胞外(微音器)反应以类似的时间进程适应,这表明神经适应的主要来源在传入突触的外周——在毛细胞、其机械输入或两者之中。两种体外制备方法为毛细胞适应提供了证据:在切除球囊并去除附属结构后,我们记录了毛细胞对耳石膜位移的细胞外反应或对毛束位移的细胞内反应。在这两种情况下,对阶跃刺激的反应都出现了适应。这种适应涉及位移 - 反应曲线沿位移轴的移动,从而使细胞的工作点朝着其毛束的静态位置重新设定。这种位移变化在去极化和超极化刺激下都会发生。其时间进程在不同细胞中有所不同,从几十毫秒到几百毫秒不等,并且也随浸泡毛细胞顶端表面的Ca2 +浓度而变化。电压钳实验表明,位移变化并不简单地取决于通过毛细胞转导通道的离子进入,并且可以在固定膜电位下发生。我们讨论了位移变化过程在青蛙球囊作为非常敏感的振动探测器功能中的可能作用。

相似文献

5
Analysis of the microphonic potential of the bullfrog's sacculus.牛蛙球囊微音器电位的分析。
J Neurosci. 1983 May;3(5):942-61. doi: 10.1523/JNEUROSCI.03-05-00942.1983.
6
Spontaneous oscillation by hair bundles of the bullfrog's sacculus.牛蛙球囊毛细胞束的自发振荡。
J Neurosci. 2003 Jun 1;23(11):4533-48. doi: 10.1523/JNEUROSCI.23-11-04533.2003.
8
Mechanoelectrical transduction by hair cells of the bullfrog's sacculus.牛蛙球囊毛细胞的机械电转导
Prog Brain Res. 1989;80:129-35; discussion 127-8. doi: 10.1016/s0079-6123(08)62206-2.

引用本文的文献

2
Effects of aging on otolith morphology and functions in mice.衰老对小鼠耳石形态和功能的影响。
Front Neurosci. 2024 Oct 16;18:1466514. doi: 10.3389/fnins.2024.1466514. eCollection 2024.
3
Direct observation of the conformational states of PIEZO1.直接观察 PIEZO1 的构象状态。
Nature. 2023 Aug;620(7976):1117-1125. doi: 10.1038/s41586-023-06427-4. Epub 2023 Aug 16.
7
Mechanotransduction in mammalian sensory hair cells.哺乳动物感觉毛细胞中的机械转导。
Mol Cell Neurosci. 2022 May;120:103706. doi: 10.1016/j.mcn.2022.103706. Epub 2022 Feb 23.
9
Mechanisms Involved in Ototoxicity.耳毒性的相关机制。
Semin Hear. 2011 Aug;32(3):217-228. doi: 10.1055/s-0031-1286616.
10
Sensory adaptation at ribbon synapses in the zebrafish lateral line.斑马鱼侧线的带状突触的感觉适应。
J Physiol. 2021 Aug;599(15):3677-3696. doi: 10.1113/JP281646. Epub 2021 Jul 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验