CNR Neuroscience Institute, Milan, and NeuroMi Milan Center for Neuroscience, Via Raoul Follereau 3, 20854, Vedano al Lambro, MB, Italy.
L'Unità Operativa Complessa di Epilettologia Clinica e Sperimentale, Foundation Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Neurological Institute Carlo Besta, 20133, Milan, Italy.
Mol Autism. 2022 Jan 3;13(1):1. doi: 10.1186/s13229-021-00484-0.
Dravet Syndrome is a severe childhood pharmaco-resistant epileptic disorder mainly caused by mutations in the SCN1A gene, which encodes for the α1 subunit of the type I voltage-gated sodium channel (Na1.1), that causes imbalance between excitation and inhibition in the brain. We recently found that eEF2K knock out mice displayed enhanced GABAergic transmission and tonic inhibition and were less susceptible to epileptic seizures. Thus, we investigated the effect of inhibition of eEF2K on the epileptic and behavioral phenotype of Scn1a ± mice, a murine model of Dravet Syndrome.
To elucidate the role of eEF2K pathway in the etiopathology of Dravet syndrome we generated a new mouse model deleting the eEF2K gene in Scn1a ± mice. By crossing Scn1a ± mice with eEF2K-/- mice we obtained the three main genotypes needed for our studies, Scn1a+/+ eEF2K+/+ (WT mice), Scn1a ± eEF2K+/+ mice (Scn1a ± mice) and Scn1a ± eEF2K-/- mice, that were fully characterized for EEG and behavioral phenotype. Furthermore, we tested the ability of a pharmacological inhibitor of eEF2K in rescuing EEG alterations of the Scn1a ± mice.
We showed that the activity of eEF2K/eEF2 pathway was enhanced in Scn1a ± mice. Then, we demonstrated that both genetic deletion and pharmacological inhibition of eEF2K were sufficient to ameliorate the epileptic phenotype of Scn1a ± mice. Interestingly we also found that motor coordination defect, memory impairments, and stereotyped behavior of the Scn1a ± mice were reverted by eEF2K deletion. The analysis of spontaneous inhibitory postsynaptic currents (sIPSCs) suggested that the rescue of the pathological phenotype was driven by the potentiation of GABAergic synapses.
Even if we found that eEF2K deletion was able to increase inhibitory synapses function, the molecular mechanism underlining the inhibition of eEF2K/eEF2 pathway in rescuing epileptic and behavioral alterations in the Scn1a ± needs further investigations.
Our data indicate that pharmacological inhibition of eEF2K could represent a novel therapeutic intervention for treating epilepsy and related comorbidities in the Dravet syndrome.
Dravet 综合征是一种严重的儿童药物难治性癫痫疾病,主要由 SCN1A 基因突变引起,该基因编码 I 型电压门控钠离子通道(Na1.1)的α1 亚基,导致大脑中兴奋和抑制失衡。我们最近发现,eEF2K 敲除小鼠表现出增强的 GABA 能传递和紧张性抑制,并且对癫痫发作的敏感性降低。因此,我们研究了抑制 eEF2K 对 Scn1a±小鼠(Dravet 综合征的一种小鼠模型)癫痫发作和行为表型的影响。
为了阐明 eEF2K 通路在 Dravet 综合征发病机制中的作用,我们在 Scn1a±小鼠中生成了一种新的敲除 eEF2K 基因的小鼠模型。通过 Scn1a±小鼠与 eEF2K-/- 小鼠杂交,我们获得了我们研究所需的三种主要基因型,即 Scn1a+/+eEF2K+/+(WT 小鼠)、Scn1a±eEF2K+/+小鼠(Scn1a±小鼠)和 Scn1a±eEF2K-/- 小鼠,并对其脑电图和行为表型进行了全面表征。此外,我们测试了 eEF2K 的一种药理学抑制剂恢复 Scn1a± 小鼠脑电图改变的能力。
我们表明,eEF2K/eEF2 通路的活性在 Scn1a± 小鼠中增强。然后,我们证明了 eEF2K 的基因缺失和药理学抑制都足以改善 Scn1a± 小鼠的癫痫表型。有趣的是,我们还发现 Scn1a± 小鼠的运动协调缺陷、记忆损伤和刻板行为也被 eEF2K 缺失所逆转。自发性抑制性突触后电流(sIPSCs)分析表明,病理性表型的挽救是由 GABA 能突触的增强驱动的。
尽管我们发现 eEF2K 缺失能够增强 GABA 能突触的功能,但在 Scn1a± 中,eEF2K/eEF2 通路的抑制在挽救癫痫和行为改变方面的分子机制仍需要进一步研究。
我们的数据表明,eEF2K 的药理学抑制可能成为治疗 Dravet 综合征癫痫和相关并发症的一种新的治疗干预措施。